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In recent years, we have seen an increased interest in applications of Bayesian Networks (BNs) in
modelling in molecular biology. It is not surprising, since BNs are very natural models for reconstructing
dependencies between observables, especially when measurements are noisy. They have been particularly
successful in the field of regulatory genomics[1, 6], where the need for uncovering causal relationships
between different variables is crucial.

While BNs are very flexible and naturally interpretable models, they are inherently difficult to train[2].
So far, the most common approach to training Bayesian networks were methods based either on Monte
Carlo Markov chains[5] or on Expectation Maximization[6]. These approaches share common problems
– they only provide approximate solutions while being computationally intensive. Recently, it has been
shown by Dojer[3] that, under additional assumptions, the optimal solution to BN reconstruction problem
can be found in polynomial time.

BNfinder[7] is a python implementation of this exact and efficient algorithm for BN reconstruction. It
is distributed under GNU General Public License, so it can be freely used or adapted by other researchers.
Since our project is currently still in its early stages, we are very open to any comments, suggestions or
code contributions coming from potential users.

In this talk, I will briefly describe current state of the project and its design. Then I will describe
three different examples of real problems that can be solved with BNfinder:

• reconstructing small gene networks from expression measurements both wildtype[8] and under
perturbation[4]

• finding informative sequence motifs for groups of coexpressed genes[1]

• predicting gene expression from cis-regulatory modules (in preparation)
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