

 17th Annual Bioinformatics Open Source Conference

BOSC 2016

Orlando, Florida, USA

July 8-9, 2016
open-bio.org/wiki/BOSC_2016

Welcome to BOSC 2016! The Bioinformatics Open Source Conference, established in 2000, is held every
year as a Special Interest Group (SIG) meeting in conjunction with the Intelligent Systems for Molecular
Biology (ISMB) Conference. BOSC is organized by the Open Bioinformatics Foundation (OBF), a non-profit
group dedicated to promoting the practice and philosophy of Open Source software development and Open
Science within the biological research community.

Sponsors
We thank Curoverse (the team behind the open source platform Arvados) as returning sponsors of BOSC
2016 and the OBF Codefest, and we welcome PLOS as new sponsors of Codefest 2016.

Organizing Committee
Nomi Harris and Peter Cock (Co-Chairs)
Brad Chapman, Chris Fields, Karsten Hokamp, Hilmar Lapp, Mónica Muñoz-Torres, Heather
Wiencko

Program Committee: Nomi Harris, Michael Heuer, Karen Cranston, Gianluca Della Vedova*, George
Githinji, Christopher Fields, Hilmar Lapp*, Scott Markel, Frank Nothaft, Lorena Pantano, Michael Reich,
Morgan Taschuk, Heather Wiencko*, Kai Blin*, Spencer Bliven*, Brad Chapman*, Michael Crusoe, Bastian
Greshake*, Hans-Rudolf Hotz*, Herve Menager, Fiona Nielsen, Konstantin Okonechnikov, João Rodrigues*,
Eric Talevich, Jason Williams, Melissa Wilson Sayres, Peter Cock*, Björn Grüning, Karsten Hokamp*, Amye
Kenall, John Chilton, Konrad Förstner*, Jens Lichtenberg, Monica C Munoz-Torres

∗ Also reviewed Late-Breaking Lightning Talk abstracts

BOSC is a community effort—we thank all who made it possible, including the organizing
committee, the program committee, the session chairs, our sponsors, and the ISMB SIG chair,
Steven Leard.

If you are interested in helping to organize BOSC 2016, please email bosc@open-bio.org.

Bioinformatics Open Source Conference (BOSC 2016) complete program 2

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

Talks and Posters
BOSC includes two full days of talks, posters, and Birds of a Feather interest groups (BOFs).
Session topics this year include Standards and Interoperability, Data Science, Open Science and
Reproducibility, and two new sessions this year: Developer Tools and Libraries, and Workflows.
Like last year, we will end with a session of late-breaking lightning talks. The longer talks this year
are 15 minutes (plus 3 minutes for questions); lightning talks are 5 minutes, with a short time
allocated for questions at the end of the session.

This year's keynote speakers will be Jennifer Gardy and Steven Salzberg. Our panel topic this year
is “Growing and sustaining open source communities”, with panelists Abigail Cabunoc Mayes,
Bastian Greshake, Jamie Whitacre, John Chilton, and Natasha Wood, and moderator Mónica
Muñoz-Torres.

Poster sessions will be held on both days during the lunch hour. Authors should put up their
posters in their assigned spot before the first poster session (which starts at 1pm).

We have space for several walk-in posters, in addition to those listed in the program. Please
contact us at bosc@open-bio.org if you’d like to present a last-minute poster.

Optional BOSC Dinners
We invite you to join BOSC organizers and attendees at a pay-your-own-way dinner the first
evening of BOSC (Friday, July 8 at 7pm) at Paradiso 37 at the Disney Springs shopping center,
about 4 miles from the conference center and accessible via a free shuttle bus.

If you want to join us for dinner, RSVP at http://bit.ly/BOSC2016-Friday-dinner before Friday at
3pm. The restaurant has space for 30 BOSC guests; only those who RSVP will be admitted.

On Saturday (again at 7pm), we’re going farther offsite to Marlow’s Tavern. RSVP at
http://bit.ly/BOSC2016-Saturday-dinner before Saturday at 3pm if you want to join us!

OBF Membership

Professionals, scientists, students, and others active in open science or open source software or in
the life sciences are invited to join BOSC’s parent organization, the Open Bioinformatics
Foundation (the OBF). The OBF grew out of the volunteer projects BioPerl, BioJava and Biopython
and was formally incorporated in 2001 in order to handle modest requirements of hardware
ownership, domain name management and funding for conferences and workshops. In 2005, we
enacted bylaws for the first time, and along with it created a formal membership.

In 2012, after overwhelming approval in a membership vote, we changed from being independently
incorporated to joining Software In The Public Interest, Inc., a fiscal sponsorship organization that
aligns well with our own values and culture. We continue to maintain our own membership so that
our community has a role in shaping our direction and vision. You can find information on how to
join OBF on the OBF wiki at http://www.open-bio.org/wiki/Membership. There is no membership
fee. If you are interested in meeting and talking to some of the OBF Directors and members,
please join us at one of the BOSC dinners (see above).

Bioinformatics Open Source Conference (BOSC 2016) complete program 3

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

BOSC 2016 Schedule

Day 1 (Friday, July 8, 2016)

Time Title Speaker / Chair

7:30-9:00 Registration

9:00-9:15 Introduction and Welcome Nomi Harris and Peter
Cock (Co-Chairs)

9:15-10:15 Keynote: The open-source outbreak: can data
prevent the next pandemic? Jennifer Gardy

10:15-10:45 Coffee Break

10:45-12:30 Session: Workflows Chair: Brad Chapman

10:45-11:03 GenomeSpace: Open source interoperability platform
with crowd-sourced analysis recipes Ted Liefeld [P1]

11:03-11:21 This is Why We Can Have Nice Things: Getting to 1.0 of
the Common Workflow Language Michael R. Crusoe [P2]

11:21-11:39 CWL in Practice: Experiences, challenges, and results
from adopting Common Workflow Language Dan Leehr [P3]

11:39-11:57 Using the Common Workflow Language (CWL) to run
portable workflows with Arvados and Toil Peter Amstutz

11:57-12:02 Planemo – A Scientific Workflow SDK John Chilton

12:03-12:08 Sample Size Does Matter: Scaling Up Analysis in Galaxy
with Metagenomics Daniel Blankenberg

12:09-12:14 NextflowWorkbench: Reproducible and Reusable
Workflows for Beginners and Experts Fabien Campagne [P4]

12:15-12:20 Promoting platform interoperability with portable bcbio
workflows Brad Chapman

12:20-12:25 Questions for lightning talk speakers in this session

12:30-13:30 Lunch

13:00-14:00 Poster Session and Birds of a Feather (overlapping
with lunch)

14:00-15:30 Session: Standards and Interoperability Chair: Hilmar Lapp

14:00-14:18 Enhancements to MISO: An open-source community-
driven LIMS Andre Masella

14:18-14:36 Biothings APIs: high-performance bioentity-centric web
services Chunlei Wu [P5]

14:36-14:54 The Noctua Modeling Tool Seth Carbon [P6]

Bioinformatics Open Source Conference (BOSC 2016) complete program 4

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

Time Title Speaker / Chair

14:54-15:12 Processing phenotype data using Phenopackets-API and
PXFTools Chris Mungall

15:12-15:17 The EDAM Ontology Jon Ison [P7]

15:18-15:23 Towards traceable, scriptable, and efficient data
distribution for next-generation genomics John Bradley [P8]

15:23-15:28 Questions for lightning talk speakers in this session

15:30-16:00 Coffee Break

16:00-17:00
Panel: Growing and sustaining open source
communities

Moderator: Mónica
Muñoz-Torres
Panelists: Abigail
Cabunoc Mayes, Bastian
Greshake,
Jamie Whitacre, John
Chilton, Natasha Wood

17:00-17:10 Open Bioinformatics Foundation (OBF) Update Hilmar Lapp (President,
OBF)

17:10-17:15 Announcements Nomi Harris

17:15-18:30 BOFs

19:00- Pay-your-own-way BOSC dinner, Paradiso 37

RSVP at
bit.ly/BOSC2016-dinner
(limited space--you must
RSVP to attend)

Any last-minute schedule updates will be posted at

http://www.open-bio.org/wiki/BOSC_2016_Schedule

Bioinformatics Open Source Conference (BOSC 2016) complete program 5

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

Day 2 (Saturday, July 9, 2016)

Time Title Speaker or
Session Chair

9:00-9:05 Announcements Peter Cock and Nomi
Harris

9:05-9:15 Codefest 2016 Report
Brad Chapman
(Codefest 2016
Organizer)

9:15-10:15 Keynote: Open source, open access, and open
data: why science moves faster in an open world Steven Salzberg

10:15-10:45 Coffee Break

10:45-12:30 Session: Data Science Chair: Heather
Wiencko

10:45-11:03 Mango: Data Exploration on Large Genomic Datasets Alyssa Morrow [P9]

11:03-11:21 ADAM Enables Distributed Analyses Across Large Scale
Genomic Datasets Frank Nothaft

11:21-11:39
SUPERSMART - A Self-Updating platform for Estimating
Rates of Speciation and Migration, Ages, and
Relationships of Taxa

Hannes Hettling

11:39-11:57 Characterization of the small RNA transcriptome using the
bcbio-nextgen python framework Lorena Pantano Rubino

11:57-12:15 MetaR: simple, high-level languages for data analysis with
the R ecosystem Fabien Campagne [P10]

12:15-12:20
Development of NGSEP as an open-source
comprehensive solution for analysis of high throughput
sequencing data

Jorge Duitama [P11]

12:21-12:26
GRNmap and GRNsight: open source software for
dynamical systems modeling and visualization of medium-
scale gene regulatory networks

Kam D. Dahlquist [P12]

12:26-12:30 Questions for lightning talk speakers in this session

12:30-13:30 Lunch

13:00-14:00 Poster Session and BOFs (overlapping with lunch)

14:00-14:40 Session: Developer tools and libraries Chair: Chris Fields

14:00-14:18 Biopython Project Update 2016 Christian Brueffer

14:18-14:23 Sequenceserver: a modern graphical user interface for
custom BLAST databases Anurag Priyam [P13]

14:24-14:29 Linuxbrew and Homebrew-Science to Navigate the
Software Dependency Labyrinth Shaun Jackman [P14]

Bioinformatics Open Source Conference (BOSC 2016) complete program 6

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

Time Title Speaker or
Session Chair

14:30-14:35 SnoVault and encodeD: A novel object-based storage
system and applications to ENCODE metadata Benjamin Hitz [P15]

14:35-14:40 Questions for lightning talk speakers in this session

14:40-15:30 Session: Open Science and Reproducibility Chair: Karsten Hokamp

14:40-14:58 State of the openSNP.org Union: Dockerizing,
Crowdfunding & Opening for Contributors Bastian Greshake [P16]

14:58-15:16 The GenePattern Notebook Environment Michael Reich [P17]

15:16-15:21 Reproducibility in computationally intensive workflows with
continuous analysis Brett K Beaulieu-Jones

15:22-15:27 Reproducible Research in the Cloud with the Refinery
Platform Nils Gehlenborg [P18]

15:28-15:33 ReportMD: Writing complex scientific reports in R Peter Humburg [P19]

15:33-15:38 Questions for lightning talk speakers in this session
15:30-16:00 Coffee Break

16:00-16:40 Session: Late-Breaking Lightning Talks Chair: Karsten Hokamp

6:00-16:05 Apollo Genome Annotation Editor: Latest Updates,
Including Galaxy Integration

Mónica C. Muñoz-
Torres [P20]

16:06-16:11 An invitation to the bioinformatics community to participate
in the HUBzero® open source release Michael Zentner [P21]

16:12-16:17 PDB on steroids – compressive structural bioinformatics Peter Rose [P22]

16:18-16:23 Puzzle: VCF/GEMINI interface for genetic disease
analysis Robin Andeer [P23]

16:24-16:29 Modernization of the Cytoscape ecosystem Keiichiro Ono [P24]

16:30-16:35 Collaborative Software Development: Lessons from Open
Source Abigail Cabunoc Mayes

16:35-16:40 Questions for lightning talk presenters

16:40-16:50 Concluding remarks Nomi Harris and Peter
Cock

17:00-18:30 BOFs

19:00 Pay-your-own-way dinner, Marlow’s Tavern RSVP

Any last-minute schedule updates will be posted at
http://www.open-bio.org/wiki/BOSC_2016_Schedule

Bioinformatics Open Source Conference (BOSC 2016) complete program 7

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

Keynote Speakers

Jennifer Gardy

Dr. Jennifer Gardy is both a scientist and science communicator. She
holds a PhD in Bioinformatics, and is an Assistant Professor of
Population and Public Health at the University of British Columbia and a
Senior Scientist at the British Columbia Centre for Disease Control
(BCCDC). At the BCCDC, she pioneered a new way of investigating
outbreaks of infectious diseases – “genomic epidemiology,” which uses a
pathogen's genome sequence as a tool for understanding how an
infectious disease spreads. Her group was the first to use genome
sequencing to reconstruct a large outbreak of tuberculosis, and she is
continuing to apply this novel technique to other outbreak scenarios. She
is also involved in other genomics-related research, including replacing
traditional laboratory microbiology protocols with single genomic
analyses. In 2014, she was appointed the Canada Research Chair in

Public Health Genomics, and is Senior Editor at the new open data, open access journal Microbial
Genomics.

In addition to her career as a research scientist, Dr. Gardy is known for her work in science communication
and education, both in print and on TV. She has made regular appearances on CBC's documentary series
The Nature of Things, has hosted CBC's eight-part science series Project X, and is a regular guest host on
Discovery Channel’s Daily Planet science show. She has written and blogged for the Globe and Mail, has
written a children’s book – It’s Catching! The Infectious World of Germs and Microbes – and runs a series of
workshops on how to communicate science effectively.

Dr. Gardy’s keynote topic is “The open-source outbreak: can data prevent the next pandemic?”

Every century, something comes along that shakes up public health – vaccines, sanitation,
antibiotics – and data promises to be the great disrupter of 21st century infectious disease
epidemiology. In the last 5-6 years, genomics has dramatically changed how public health agencies
diagnose and investigate diseases from food poisoning to tuberculosis, giving us a new tool to
understand and control infections. The change is also apparent at a cultural level – genomics and
bioinformatics researchers have largely come from an open data, collaborative space and have
brought new ways of thinking to public health laboratories, previously secret, closed organizations. In
this talk, we’ll explore some of the dramatic changes in public health microbiology that genomics and
bioinformatics has facilitated, and look at how future data sharing efforts in areas such as digital
disease detection might be the key to preventing future pandemics.

Steven Salzberg
Dr. Steven Salzberg is the Bloomberg Distinguished Professor of Biomedical
Engineering, Computer Science, and Biostatistics and the Director of the Center
for Computational Biology in the McKusick-Nathans Institute of Genetic
Medicine at Johns Hopkins University. From 2005-2011, he was the Director of
the Center for Bioinformatics and Computational Biology and the Horvitz
Professor of Computer Science at the University of Maryland, College Park.
From 1997-2005 he was Senior Director of Bioinformatics at The Institute for
Genomic Research (TIGR) in Rockville, Maryland, one of the world's leading
DNA sequencing centers at the time.

Bioinformatics Open Source Conference (BOSC 2016) complete program 8

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

Salzberg's lab currently focuses on next-generation sequence alignment, genome assembly, and microbiome
analysis. They have produced several popular systems for alignment of next-generation sequencing reads,
including the Bowtie, Tophat, and Cufflinks systems. All of the group's software is free and open source, and
their systems have been downloaded hundreds of thousands of times.

Dr. Salzberg is a Fellow of the American Association for the Advancement of Science (AAAS) and a Fellow
of the International Society for Computational Biology (ISCB). He was the 2013 winner of the Benjamin
Franklin Award for Open Access in the Life Sciences, in recognition of his many contributions to open access
bioinformatics software and his strong advocacy for open access to data, software and publications.

Dr. Salzberg will speak about "Open source, open access, and open data: why science moves faster in an
open world."

The Human Genome Project established a practice of sharing data rapidly, prior to publication, that
has since become a model for many projects in genomics. Data sharing has been slow to penetrate
other fields because of many factors, some of which I will discuss in this talk. Nevertheless, sharing of
methods, data, and results helps science move ahead faster, and openness is essential for the
continual process of checking and self-correction that good science requires. I will discuss some of the
successes as well as some noteworthy mistakes that have been discovered thanks to open science.

Bioinformatics Open Source Conference (BOSC 2016) complete program 9

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

Panel: Growing and sustaining open source communities

Panel chair Mónica Muñoz-Torres (@monimunozto) is the biocuration lead for
Berkeley Bioinformatics Open-Source Projects (BBOP) at Lawrence Berkeley National
Laboratory. She is part of the development teams for Apollo (a web-based annotation
editor designed to support community-based curation of genomes) and the tools of the
Gene Ontology (GO) Consortium. She leads the Community Curation group within the
global initiative to sequence and annotate the genomes of 5,000 arthropods (i5K
Initiative), and is a member of the Executive Committee of the International Society for
Biocuration (ISB). As a graduate student, Monica founded the first Southeastern

Chapter of the Society for Advancement of Hispanics/Chicanos and Native Americans in Science (SACNAS)
at Clemson University; the chapter has since been actively involved in outreach activities to local high
schools in an attempt to inspire students to pursue careers in STEM.

Abigail Cabunoc Mayes (@abbycabs) is the Lead Developer of the Mozilla Science
Lab, an initiative of the Mozilla Foundation working to make research collaborative,
accessible and usable. She has led development on various open source science
projects such as Contributorship Badges for Science and WormBase. Before joining
Mozilla, Abby worked as a bioinformatics software developer at the Ontario Institute for
Cancer Research and at Michigan State University. With a background in bioinformatics
and computer science, she builds tools that use the web to move science forward.

Bastian Greshake (@gedankenstuecke) is a biologist-turned-bioinformatician, currently
working on his PhD in the Group for Applied Bioinformatics at the University of
Frankfurt. When not doing research in fungal genomics he's also an open* advocate. In
2011 he co-founded openSNP, a crowdsourced/citizen science open data project that
puts personal genetics data into the public domain. Over the course of running
openSNP he experienced the different sides of sustaining and growing a scientific open
source project which is independent of traditional academic institutions.

Jamie Whitacre is the technical project manager for Project Jupyter, which was born
out of the IPython Notebook in 2014. Jupyter is a web application that allows users to
perform exploratory data analysis and create and share documents that contain live
code, equations, visualizations and explanatory text. Before joining Project Jupyter,
Jamie worked with the Smithsonian’s National Museum of Natural History building out
scientific workflows and databases for several genetics and genomics initiatives. Jamie
works from the Berkeley Institute for Data Science and is an affiliate of the Lawrence
Berkeley National Laboratory.

John Chilton (@jmchilton) is a software developer on the Galaxy project working at
Penn State in the lab of Anton Nekrutenko. He has loudly pushed the Galaxy
community toward increased openness by spearheading efforts such as the adoption of
an open governance model and a project code of conduct. He is also one of the co-
founders of the Common Workflow Language.

Natasha Wood (@natasha_wood) is an NRF Research Career Award Fellow and
lecturer in the Department of Integrative Biomedical Sciences at the University of
Cape Town, South Africa. Her research includes molecular dynamics and evolutionary
modelling of HIV structural and sequence data to better understand the interplay
between the virus and host immune system. She promotes the development of the
bioinformatics community through training initiatives, hackathons and more social
platforms (as co-founder of the Cape Unseminars in Bioinformatics).

Bioinformatics Open Source Conference (BOSC 2016) complete program 11

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

Poster
Title Presenter

1
GenomeSpace: Open source interoperability platform with crowd-
sourced analysis recipes Ted Liefeld

2
Why We Can Have Nice Things: Getting to 1.0 of the Common
Workflow Language

Michael R.
Crusoe

3
CWL in Practice: Experiences, challenges, and results from
adopting Common Workflow Language Dan Leehr

4
NextflowWorkbench: Reproducible and Reusable Workflows for
Beginners and Experts

Fabien
Campagne

5 Biothings APIs: high-performance bioentity-centric web services Chunlei Wu
6 The Noctua Modeling Tool Seth Carbon
7 The EDAM Ontology Jon Ison

8
Towards traceable, scriptable, and efficient data distribution for
next-generation genomics John Bradley

9 Mango: Data Exploration on Large Genomic Datasets Alyssa Morrow

10
MetaR: simple, high-level languages for data analysis with the R
ecosystem

Fabien
Campagne

11
Development of NGSEP as an open-source comprehensive
solution for analysis of high throughput sequencing data Jorge Duitama

12

GRNmap and GRNsight: open source software for dynamical
systems modeling and visualization of medium-scale gene
regulatory networks

Kam D.
Dahlquist

13
Sequenceserver: a modern graphical user interface for custom
BLAST databases Anurag Priyam

14
Linuxbrew and Homebrew-Science to Navigate the Software
Dependency Labyrinth Shaun Jackman

15
SnoVault and encodeD: A novel object-based storage system and
applications to ENCODE metadata Ben Hitz

16
State of the openSNP.org Union: Dockerizing, Crowdfunding &
Opening for Contributors

Bastian
Greshake

17 The GenePattern Notebook Environment Michael Reich
18 Reproducible Research in the Cloud with the Refinery Platform Nils Gehlenborg
19 ReportMD: Writing complex scientific reports in R Peter Humburg

20
Apollo Genome Annotation Editor: Latest Updates, Including Galaxy
Integration

Monica Munoz-
Torres

21
An invitation to the bioinformatics community to participate in the
HUBzero® open source release Michael Zentner

22 PDB on steroids – compressive structural bioinformatics Peter Rose
23 Puzzle: VCF/GEMINI interface for genetic disease analysis Robin Andeer
24 Modernization of the Cytoscape ecosystem Keiichiro ONO

Bioinformatics Open Source Conference (BOSC 2016) complete program 12

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

Poster only:

Poster
Title Presenter

25
Lightweight sample labeling, barcoding and tracking systems for the
academic laboratory

Dimitra
Sarantopoulou

26 Kronos: a workflow assembler for genome analytics and informatics Jafar Taghiyar

27
PhyPipe: an automated pipeline for phylogenetic reconstruction
from multilocus sequences

Javier Correa
Alvarez

28 Skip the line and balance your work with vQ Gregory Zynda

29
Using the Nextflow framework for reproducible in-silico omics analyses
across clouds and clusters

Paolo Di
Tommaso

29-32 Walk-in posters (email bosc@open-bio.org to apply!)

Bioinformatics Open Source Conference (BOSC 2016) complete program 10

Bioinformatics Open Source Conference
Orlando, Florida, USA � July 8-9, 2016

Talk and Poster Abstracts

In the pages that follow, talk abstracts appear in the order in which the talks will be presented.
Some authors will also present their work as posters. Those abstracts have a poster number on
the abstract. Poster-only abstracts appear after the talk abstracts.

There are also a few spaces available for walk-in posters. If you would like to present one, please
email your abstract (which must meet the BOSC criteria of freely available source and recognized
open source license) to bosc@open-bio.org.

BOSC 2016 – Workflows
Day One, 8 July 2016, 10:45 – 12:30
Session chair: Brad Chapman

This talk is accompanied by poster #1.

GenomeSpace:+Open+source+interoperability+platform+with+crowd9
sourced+analysis+recipes+

Ted$Liefeld1,$Sara$Garamszegi2,$Felix$Wu2,$Marco$Ocana1,$$Barbara$Hill2,$$Helga$
Thorvaldsdottir2,$Michael$Reich1,$,$Jill$Mesirov1$

1$University$of$California$San$Diego,$La$Jolla,$CA,$USA.$Email:$liefeld@ucsd.edu$
2TheBroad$Institute$ofMITand$Harvard,$Cambridge,$MA,$USA.$
$
Project+Website:$http://www.genomespace.org$
Source+Code:$https://bitbucket.org/GenomeSpace/combined/$
License:GNULesser$General$Public$License$(LGPL).$
$

Main+Text+of+Abstract+

GenomeSpaceisa$cloudWbased$environment$that$provides$interoperability$between$bestWofWbreed$
computational$tools,$enabling$scientists$to$easily$combine$tool$capabilities$without$needingto
program.Itoffersacommon$space$to$utilize,$contribute,andshareaneverWgrowing$range$of$
genomic$analysis$tools.$GenomeSpace$provides$support$for$cloudWbased$data$storage$and$analysis,$
multiWtool$analysis$scenarios,$automatic$conversionofdata$between$tools,andeaseofconnecting$
new$tools$totheenvironment.$GenomeSpace$is$free$forallusersandis$open$source$under$theGNU
Lesser$General$Public$License$(LGPL).$

The$GenomeSpace$architecture$consists$of(1)a$server$runninginthe$Amazon$cloud$that$manages$
communicationsanddata$transfer$between$tools,$and$data$storage;(2)the$collection$of$
computational$tools,$updatedtocommunicate$with$the$GenomeSpace$server$while$retaining$their$
original$user$interfaces;and(3)$connections$to$Amazon,$Dropbox,andGoogle$Drive$cloudWbased$
data$services.$The$connection$between$server,$tools,anddataisprovidedbya$RESTful$API$that$can$
be$easily$adoptedbynew$tools.$A$webWbased$user$interface$providesanintegrated$tool$baranddata$
view$from$which$users$can$launch$tools,$perform$analyses,andtransfer$data.$GenomeSpace$also$
provides$singleWsignWon$across$compatible$toolsviaOpenID.$

We$will$describetheopen$source$GenomeSpace$platform$andhowitcanbe$used$to$support$
genomic$analyses$that$utilize$multiple$independent$tools$including$GenePattern,$Galaxy,$Cytoscape,$
and$IGV.$We$will$also$show$how$developers$canaddtheirowntoolstothe$GenomeSpace$ecosystem.$
We$will$also$describe$the$newly$released$GenomeSpace$Recipe$Resource,$a$repository$of$short,$
standalone$guides$for$performing$integrative$bioinformatic$analyses.$Each$recipe$walks$users$stepW
byWstep$through$the$process$of$obtaining$and$analyzing$data$across$multiple$GenomeSpaceWenabled$
tools.TheRecipe$Resource$providestheGenomeSpace$community$withtheabilitytocreate,$share,$
and$collaborate$on$analytic$recipesofcommon$value.$$

$

BOSC 2016 – Workflows
Day One, 8 July 2016, 10:45 – 12:30
Session chair: Brad Chapman

This talk is accompanied by poster #2.

Title This is Why We Can Have Nice Things: Getting to 1.0 of the Common Workflow Language
Authors Michael R. Crusoe
Contact michael.crusoe@gmail.com
URLs http://www.commonwl.org/
License Apache License, Version 2.0

Common infrastructure that is usable by diverse participants does not come for free: it requires cooperation,
patience, time, and care. When a community decides to invest its resources into creating and maintaining a
common good, like F/OSS scientific software or interoperability standards, they can reap significant rewards:
both from an academic/research perspective, and from a commercial market perspective.

How do we build communal goods that are 1) made in an open manner 2) not heavy-handed top-down
projects 3) attentive to actual needs of others and 4) still useful?

As a follow-up to the debut at BOSC 2015 of a project that began at the BOSC 2014 Codefest, we are proud
to present version 1.0 of the Common Workflow Language and the community of practitioners, implementors,
vendors, academics, and businesses involved in its creation and maintenance.

In this talk we present an update on our activities this last year and how we (and the standards) changed
along the way. The challenges outlined above will be reviewed alongside what we have done, or plane to do,
to address them.

BOSC 2016 – Workflows
Day One, 8 July 2016, 10:45 – 12:30
Session chair: Brad Chapman

This talk is accompanied by poster #3.

Title CWL in Practice: Experiences, challenges, and results from adopting Common Workflow Language
Authors Dan Leehr, Alejandro Barrera, Tim Reddy, Hilmar Lapp
A�liation Duke University, Center for Genomic and Computational Biology
Contact dan.leehr@duke.edu
URL https://github.com/Duke-GCB/GGR-cwl
License MIT

Assembling individual bioinformatics software packages to run together as a pipeline is often done by scripting
them together in an implementation language like Bash, Python, or Perl. While simple to build and
understand, this often yields pipelines that are di�cult to repeat across computing environments, are not
generalizable across data sets, and require nontrivial e�ort for tracking and archiving the exact versions of the
tools that make up pipeline components. As a result, reusing, adapting, or even only repeating a bioinformatics
analysis pipeline later in an environment other than its original one has become notorious for the di�culties
involved. To address this problem, the Common Workflow Language (CWL) endeavors to provide a blueprint
for architecting workflows declaratively. With open source implementations and a comprehensive specification,
CWL provides a basis for building reusable components and reproducible, modular bioinformatics pipelines
that facilitate swapping di�erent analytic methods or algorithm implementations in and out. Because CWL
is agnostic of workflow engine implementation, pipeline definitions do not need to be tied to a particular
execution environment. CWL also encourages the use of Docker images for pipeline components, which
not only isolate tools and their myriad of dependencies from each other, but also allows entire compute
environments to be faithfully archived, shared, and reused.

Here we report on using CWL in support of the Genomics of Gene Regulation (GGR) project, a multi-
institutional collaboration which aims to comprehensively characterize and better understand the first 12
hours of the glucocorticoid response (GCR). The lab of one of the project PIs at Duke, Tim Reddy, uses
gene editing techniques to turn on and o� genes, with the goal of elucidating the network of gene regulation
involved in the GCR. This involves comparing the results of numerous genomic experiments in each condition,
which requires developing data processing pipelines that can be confidently repeated, reused and customized,
both by collaborators within the project, and by scientists at large wishing to reproduce and build on the
team’s findings.

We will highlight our experiences, challenges, and results from transforming the team’s existing scripted
workflows to workflows defined in the CWL standard. In comparison, GGR workflows migrated to CWL
became more flexible, easier to modify, and amenable to replacing entire parts with alternative methods, which
improved the project’s analytic capabilities. Another benefit was the ability to reuse pipeline components
shared between the analysis of ChIP-seq, RNA-seq, and DNase-seq experiments. Finally, publishing alongside
a paper the CWL definitions of the underlying computational pipelines and the data sets allows others to
reproduce the results, even though our specific high-performance computing environment, like most others, is
not a public resource.

During the development of these CWL pipelines we have also faced two major challenges, and we will detail
our approaches to them. One of them was translating the control flow and imperative scheduling logic found
in the existing workflows expressed in a Turing-complete scripting language, to CWL’s declarative language
that is evaluated at compile time. The second challenge is the practical aspects of adopting CWL workflows
in a shared academic HPC cluster environment. Our research center operates a computational genomics
workload-tailored HPC cluster running Slurm as the schedular, and as a shared HPC environment users do
not have the elevated privileges needed to run Docker containers or virtual machines, as CWL would favor.
To address this, we have started to create pipeline component alternatives as loadable Environment Modules
using helmod. In addition, we are extending toil, a CWL-supporting workflow engine that interfaces with job
schedulers, to integrate with Slurm, which will allow us to better scale up CWL workflows to the available
HPC resources.

1

BOSC 2016 – Workflows
Day One, 8 July 2016, 10:45 – 12:30
Session chair: Brad Chapman

Using the Common Workflow Language (CWL) to run
portable workflows with Arvados and Toil

Peter Amstutz1, Brian O’Connor2, Benedict Paten2, Alexander Wait Zaranek1

1
 Curoverse, Boston. peter.amstutz@curoverse.com, awz@curoverse.com

2
 University of California, Santa Cruz. broconno@ucsc.edu, benedict@soe.ucsc.edu

With special thanks to all contributors to Common Workflow Language, Toil, and Arvados.

Project Websites:
http://commonwl.org, http://arvados.org, https://toil.readthedocs.org/en/latest/

Source Code:
https://github.com/commonworkflowlanguage/commonworkflowlanguage,
https://github.com/curoverse/arvados, https://github.com/BD2KGenomics/toil

License:
https://github.com/commonworkflowlanguage/commonworkflowlanguage/blob/master/LICENSE.txt

https://github.com/curoverse/arvados/blob/master/COPYING

https://github.com/BD2KGenomics/toil/blob/master/LICENSE.txt

The Common Workflow Language (CWL) is a community effort that started at the BOSC

Codefest 2014 to create a common specification for describing analysis tools and workflows that

is portable and scalable across a variety of hardware and software platforms. Arvados is a

cluster and cloud compute platform developed by Curoverse consisting of a contentaddressed

storage system “Keep”, a compute management system “Crunch”. Arvados can run in a variety

of cloud and cluster computing configurations. Toil is a workflow management engine

developed by the University of California Santa Cruz Genomics Institute. Toil also supports a

number of cluster and cloud computing environments.

Some of the benefits of a common, communitydeveloped language for computational

workflows include the ability of scientists to collaborate and leverage the work of others,

enhanced development of tooling around a common format, code that can “travel to the data”

avoiding the need for large downloads and addressing legal issues around data migration, and

ease of benchmarking methods across tools, techniques and platforms.

This talk will briefly introduce CWL and provide a project and community update since BOSC

2015. The talk will discuss the implementation of CWL on the Arvados platform and in the Toil

workflow engine and how compatibility with CWL was achieved differences in the design of

each system. The talk will discuss how to run workflows written in CWL on each system. The

talk will then present results from running a representative genomics workflow written using

CWL on both Arvados and Toil, using different cloud providers, with no workflow customization

or porting required.

BOSC 2016 – Workflows
Day One, 8 July 2016, 10:45 – 12:30
Session chair: Brad Chapman

Planemo – A Scientific Workflow SDK

John Chilton 1, Aysam Guerler 2, and The Galaxy Team
1
Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16801, US

2
Department of Biology, Johns Hopkins University, Baltimore, MD 21218, US

jmchilton@gmail.com

Project: http://galaxyproject.org/
Code: http://github.com/galaxyproject/planemo
License: Academic Free License version 3.0

Galaxy is a data analysis platform capable of integrating diverse commandline utilities into a

consistent and intuitive webbased interface and API. A salient feature of Galaxy is the ability it

provides to compose analysis steps together into workflows. A novel approach to building,
refining, and running scientific workflows leveraging Galaxy through the commandline toolkit

Planemo will be presented.

Traditionally there have been two methods to build Galaxy workflows a graphical workflow

editor and a workflow extraction interface. Both of these methods are great enduser facing

tools that allows users with development experience to build workflows. However, sophisticated

bioinformaticians and Galaxy plugin developers (e.g. tool developers) may prefer driving

workflow development through their existing tool chains and methodologies such as

programming text editors, commandline invocation, testdriven development, and revision

control. The approach presented leverages YAMLbased workflow descriptions as plain files

allowing exactly this.

The approach will be used as a lens to highlight these workflows formats (Format 2 Galaxy

workflows and Common Workflow Language (CWL) workflows) as well as important updates

from the myriad of recent Galaxy workflow enhancements that have made them dramatically

more usable, powerful, and performant.

Format 2 Galaxy workflows map directly to existing Galaxy tool and workflow concepts and are

described in a very concise and readable YAML format. These will work without modifications to

Galaxy today. CWL specifications for tools and workflows are developed in an open fashion by

many organizations with the aim of creating truly portable descriptions. The execution of CWL

workflows in Galaxy is being actively worked on and progress will be discussed.

These innovations are enabled in part by many core Galaxy enhancements. The most important

of these enhancements will be highlighted. Including:

● The user interface for workflows has been overhauled and improved.

● Workflows now allow nesting, nondata inputs, implicit connections, and many new

operations over collections Galaxy workflows are now vastly more expressive.

● Recent performance enhancements allow Galaxy workflows to scale to thousands of

datasets.

BOSC 2016 – Workflows
Day One, 8 July 2016, 10:45 – 12:30
Session chair: Brad Chapman

Sample	Size	Does	Matter:	Scaling	Up	Analysis	in	Galaxy	with	
Metagenomics	

	
Daniel	Blankenberg1,	2,	Sarah	Carnahan-Craig3,	and	the	Galaxy	Team2	
1	Department	of	Biochemistry	and	Molecular	Biology,	Penn	State	University,	
University	Park,	PA	16802,	USA.	Email:	dan@bx.psu.edu	
2	https://galaxyproject.org.	
3	Department	of	Biology,	Penn	State	University,	University	Park,	PA	16802,	USA.	
	
Project	Website:	galaxyproject.org	License:	Academic	Free	License	version	3.0	

Source	Code:	github.com/galaxyproject/galaxy	
	

Galaxy	(http://galaxyproject.org)	is	an	open,	web-based	platform	for	accessible,	
reproducible,	and	transparent	computational	biomedical	research.	Galaxy	makes	
bioinformatics	analyses	accessible	to	users	lacking	programming	experience	by	
enabling	them	to	easily	specify	parameters	for	running	tools	and	workflows.	
Analyses	are	made	transparent	by	allowing	users	simple	access	to	share	and	publish	
analyses	via	the	web	and	create	Pages,	interactive,	web-based	documents	that	
describe	a	complete	analysis.	
	
Metagenomics	provides	an	exciting	opportunity	to	begin	to	explore	large-scale	
multiple	sample	analysis	with	Galaxy.	As	part	of	an	obesity	study,	we	have	obtained	
over	400	buccal	and	stool	samples	from	mother-child	pairs.	These	samples	have	
been	subjected	to	16S	RNA	extraction	and	sequencing	on	a	MiSeq	instrument.	While	
sequencing	400	samples	is	no	small	feat,	once	generated,	the	data	analysis	reveals	
itself	as	crippling	bottleneck.		
	
Galaxy	provides	researchers	with	a	vast	quantity	of	tools	and	methods	to	analyze	a	
wide-array	of	data,	and	makes	connecting	any	number	of	tools	together	easy	via	
Workflows.	Although	running	a	workflow	individually	over	a	handful	of	samples	is	
approachable,	how	does	one	deal	with	10,	20,	or	even	100	samples	without	
becoming	frustrated,	introducing	errors,	breaking	their	mouse,	or	falling	back	to	
writing	an	API	script?	While	Dataset	Collection	functionality	provides	a	significant	
portion	of	a	solution	to	this	problem,	there	are	still	major	hurdles	that	need	to	be	
overcome	before	Galaxy	is	usable	for	large	multiple	sample	analysis.		
	
Here	we	describe	a	generalizable	metagenomic	pipeline	as	implemented	within	
Galaxy	that	is	able	to	handle	the	simultaneous	analysis	of	over	5,000	Human	
Microbiome	Project	samples.	In	addition	to	integrating	a	number	of	third-party	
algorithms	and	toolsets,	some	requiring	the	creation	of	upstream	fixes	and	
enhancements,	we	have	developed	new	tools	and	approaches	for	dealing	with	large	
collections	of	data.	Furthermore,	we	discuss	the	problems	encountered	using	Galaxy	
at	a	large-scale,	what	has	been	done	to	overcome	these	issues,	as	well	as	initial	
results.	

BOSC 2016 – Workflows
Day One, 8 July 2016, 10:45 – 12:30
Session chair: Brad Chapman

This talk is accompanied by poster #4.

NextflowWorkbench: Reproducible and Reusable Workflows for
Beginners and Experts
Jason	P.	Kurs1,	Manuele	Simi1,2,	Fabien	Campagne1,2,3,*	
1The	HRH	Prince	Alwaleed	Bin	Talal	Bin	Abdulaziz	Alsaud	 Institute	 for	Computational	Biomedicine,	
Weill	Cornell	Medicine,	New	York,	NY,	United	States	of	America;	2Clinical	Translational	Science	Center,	
Weill	 Cornell	 Medicine,	 New	 York,	 NY,	 United	 States	 of	 America;	 3Department	 of	 Physiology	 and	
Biophysics,	 Weill	 Cornell	 Medicine,	 New	 York,	 NY,	 United	 States	 of	 America.	 *To whom
correspondence should be addressed: fac2003@campagnelab.org
	

Keywords:	Workflows,	Pipelines,	Reproducibility,	Docker,	Language	Workbench	Technology	
	
Computational workflows and pipelines are often created to automate series of processing
steps. For instance, workflows enable one to standardize analyses for large projects or core
facilities, but are also useful for individual biologists who need to perform repetitive data
processing.

Some workflow systems are designed for beginners: they offer a graphical user interface and
have been very popular with biologists. In practice, these tools are infrequently used by more
experienced bioinformaticians, who may require more flexibility or performance than afforded by
the user interfaces, and seem to prefer developing workflows with scripting or command line
tools.

The talk will introduce the NextflowWorkbench, a workflow system designed for both beginners
and experts that blends the distinction between user interface and scripting language. This
system extends and reuses the popular Nextflow workflow description language
(http://nextflow.io) and shares its advantages. It is built using Language Workbench Technology,
also used to develop the MetaR platform [1].

In contrast to Nextflow, NextflowWorkbench offers an integrated development environment that
helps complete beginners get started with workflow development. Auto-completion helps users
who do not know the syntax of the Nextflow language, and typesystem checks make it possible
to validate a workflow as it is being developed, in order to provide immediate feedback to the
developer. Expert bioinformaticians will also benefit from unique interactive features that help
them work more productively with docker containers. Finally, reusable processes provide
modular workflows, a feature useful to both beginners and experts.

We illustrate this tool with a workflow to estimate RNA-Seq counts using Kallisto. We found that
beginners can be taught how to assemble this workflow in a two hours training session. The
workflow can transparently run either on a laptop with docker, on a lab cluster, or in the cloud.

NextflowWorkbench simplifies the development of reproducible, implicitly parallel workflows [2].
Software is distributed under the Apache 2.0 license and available at
https://github.com/CampagneLaboratory/NextflowWorkbench, http://workflow.campagnelab.org.

References: [1] Fabien Campagne, William ER Digan, Manuele Simi. MetaR: simple, high-level
languages for data analysis with the R ecosystem. bioRxiv doi: http://dx.doi.org/10.1101/030254
[2] Jason P Kurs, Manuele Simi, Fabien Campagne. NextflowWorkbench: Reproducible and
Reusable Workflows for Beginners and Experts. bioRxiv doi: http://dx.doi.org/10.1101/041236

BOSC 2016 – Workflows
Day One, 8 July 2016, 10:45 – 12:30
Session chair: Brad Chapman

Title Promoting platform interoperability with portable bcbio workflows
Authors Brad Chapman, Rory Kirchner, Lorena Pantano, Peter Amstutz, Alexander

Zaranek, Shannan Ho Sui, Oliver Hofmann
A�liations Harvard Chan School Bioinformatics Core

(http://bioinformatics.sph.harvard.edu/),
Curoverse (https://curoverse.com/),
Wolfson Wohl Cancer Research Centre
(http://www.gla.ac.uk/researchinstitutes/cancersciences/ics/facilities/wwcrc/)

Contact bchapman@hsph.harvard.edu
Availability https://github.com/chapmanb/bcbio-nextgen
License MIT

Running multi-step bioinformatics analyses requires coordinating software and data across a wide variety
of heterogeneous computational resources. We’ve actively developed bcbio (https://github.com/chapmanb/
bcbio-nextgen) for the past six years as a open, community built approach to developing variant calling,
RNA-seq and small RNA analyses. The complexity of supporting scalable parallel workflows has become a
barrier to allowing bcbio to interact with other open source platforms.

bcbio previously used a parallelization framework build on IPython parallel (https://ipyparallel.readthedocs.
org) that runs on both local compute infrastructure (https://bcbio-nextgen.readthedocs.org/en/latest/
contents/parallel.html) and on cloud resources (https://bcbio-nextgen.readthedocs.org/en/latest/contents/
cloud.html). This approach unintentionally isolated bcbio development. For example, we could not easily
deploy bcbio on community developed systems like Galaxy (https://galaxyproject.org/) due to di�erent
approaches to running compute jobs. This incompatibility results in duplication of e�ort as bcbio develops
and tests system specific parallel code, while communities like Galaxy need to re-implement validated and
tested analyses available in bcbio.

We re-engineered bcbio’s internal workflow representation to use the Common Workflow Language (CWL:
http://www.commonwl.org/). By using this community standard, users choose an infrastructure that matches
their usage requirements. First build a bcbio parallel workflow directly from existing sample description
files (https://bcbio-nextgen.readthedocs.org/en/latest/contents/cwl.html), then choose the appropriate run
environment. A clinical lab requiring full data provenance could run the generated bcbio CWL using
Arvados (https://arvados.org/). Research teams with local compute could use an alternative engine like
Toil (https://github.com/BD2KGenomics/toil). By interoperating with other workflows, bcbio supplements
existing infrastructure and analysis development within each system.

We’ll discuss the challenges of migrating to CWL versus the benefits of being able to integrate within multiple
platforms. bcbio is now a better architected, more portable set of validated tools and workflows to help
scientists answer biological questions. We focus on developing analysis methods and validations while CWL
supporting tools focus on other essential functionality like run tracking, multi-architecture support, resource
usage assessment, provenance and data management. We hope to promote the continued exploration of ways
to re-use and cooperate more e�ectively as an open source community.

BOSC 2016 – Standards and Interoperability
Day One, 8 July 2016, 14:00 – 15:30
Session chair: Hilmar Lapp

Enhancements to MISO: An opensource communitydriven LIMS

Heather Armstrong1, Dillan Cooke1, Tony DeBat1, Andre Masella1, Christopher Salt2, Robert
Davey2, Morgan Taschuk†1

1 Ontario Institute for Cancer Research, Toronto, Canada

2 The Genome Analysis Centre, Norwich, UK
† Corresponding author

Project Website: http://tgac.github.io/misolims/
Source Code: https://github.com/TGAC/misolims/
License: GNU Public License v3

Laboratory Information Management Systems (LIMS) are most beneficial when they mirror lab
procedures closely. Sequencing LIMS need to track sample receipt and preparation, record
results from quality control, submit libraries for sequencing, and monitor results. Commercial
LIMS require license fees and ongoing support contracts to keep software uptodate and
bugfree. New features are only considered once there is demand from a sufficient number of
customers. Purchasing a commercial LIMS is often infeasible or impractical for smaller
sequencing centres or those who focus on technical developments in sequencing practice.
Using an open source LIMS allows the cost of updates to be distributed amongst its users.
Developers can directly fix bugs and add new features as desired, and these benefits can be
shared with the community without incurring further costs.

MISO is an opensource LIMS used and developed by several institutes in the UK, the
Netherlands, and Canada. Since last presented at BOSC, we have expanded its functionality.
Now, users can create and propagate detailed samples through customizable laboratory
workflows. Webbased bulk entry is available in many places, avoiding the need to use external
spreadsheets. Using the new order system, users can request the number and type of
sequencing runs for each pool of samples and track outstanding requests. We have added
support for barcoded storage tube boxes and integrated MISO with the Thermo Scientific
VisionMate plate scanner. Sequencer information pages have detailed support history. Change
logs now record user modifications on almost every entity. The bundled MISO analysis server
can launch primary analysis processes both on LSF and Slurm. We have also made the
codebase much more robust through intense bug fixing and increased test coverage, thus
providing stability enhancements and simplified deployment.

MISO is available on Github at https://github.com/TGAC/misolims/ under GPL v3.

BOSC 2016 – Standards and Interoperability
Day One, 8 July 2016, 14:00 – 15:30
Session chair: Hilmar Lapp

This talk is accompanied by poster #5.

Biothings	APIs:	high-performance	bioentity-centric	web	services	

Cyrus	Afrasiabi1,	Jiwen	Xin1,	Ginger	Tsueng1,	Andrew	I.	Su1*,	Chunlei	Wu1*	
1	The	Scripps	Research	Institute,	10550	N	Torrey	Pines	Rd,	La	Jolla,	CA	92037	
*Email:	cwu@scripps.edu,	asu@scripps.edu		
Project	Website:	http://biothings.io,	also	see	http://mygene.info	and	http://myvariant.info		
Source	Code:	https://github.com/sulab/biothings.api	
License:	Apache	License	v2	
	

The	 accumulation	 of	 biological	 knowledge	 and	 the	 advance	 of	 web	 and	 cloud	 technology	 are	
growing	in	parallel.	The	latest	computation	technology	allows	us	to	modernize	the	way	we	collect,	
organize	and	disseminate	the	growing	biological	knowledge.	Just	like	what	has	been	happening	in	
the	 software-engineering	 field,	 biological	 data	 providers	 start	 to	 provide	 web-based	 APIs	
(Application	 Programming	 Interfaces)	 for	 accessing	 data	 in	 a	 simple	 and	 reliable	 manner,	 in	
addition	to	the	traditional	raw	flat-file	downloads.	Web	APIs	provide	many	benefits	over	traditional	
file	downloads.	For	instance,	users	can	request	specific	data	such	as	list	of	genes	of	interest	without	
having	to	download	the	entire	dataset,	thereby	providing	the	latest	data	on	demand	and	reducing	
compute	 and	data	 transfer	 times.	Web	APIs	 are	 also	more	 likely	 to	 return	data	 that	 conforms	 to	
common	 standards	 (e.g.	 JSON	 or	 XML).	 This	 means	 that	 programmers	 can	 spend	 less	 time	 on	
wrangling	data,	and	more	time	on	analysis	and	discovery.	

Building	 and	 deploying	 scalable	 and	 high-performance	web	APIs	 requires	 sophisticated	 software	
engineering	techniques	that	may	not	be	known	to	many	bioinformatics	developers.	We	previously	
developed	 high-performance	 and	 scalable	 web	 APIs	 for	 gene	 and	 genetic	 variant	 annotations,	
accessible	at	MyGene.info	and	MyVariant.info.	These	two	services	are	a	tangible	implementation	of	
our	expertise	and	collectively	serve	over	6	million	requests	every	month	from	thousands	of	unique	
users.	Crucially,	the	underlying	design	and	implementation	of	these	systems	are	in	fact	not	specific	
to	genes	or	variants,	but	 rather	 can	be	easily	adapted	 to	other	biomedical	data	 types	 such	drugs,	
diseases,	 pathways,	 species,	 genomes,	 domains	 and	 interactions,	 collectively,	 we	 refer	 them	 as	
“BioThings”.	

Based	on	the	existing	MyGene.info	and	MyVariant.info	APIs,	we	now	provide	a	generic	framework	
(or	called	BioThings	SDK)	for	building	the	same	high-performance	APIs	for	other	BioThings	data	
types.	This	SDK	enables	other	developers	 to	build	 their	own	BioThings	API	 for	 their	specific	data	
types.	 Users	 can	 take	 advantage	 of	 the	 abstracted	 technical	 layers	 we	 built	 into	 the	 SDK,	 and	
produce	 a	 high-performance	 API,	which	 follows	 the	 best	 practice	 and	 community	 standards.	We	
also	adopted	JSON-LD	technology	to	form	the	connections	between	different	data	types,	so	that	the	
set	of	BioThings	APIs	will	form	a	network	of	linked	programmatic-accessible	biological	knowledge.	
As	these	BioThings	APIs	are	preferred	to	be	built	under	the	cloud	environment,	the	BioThings	SDK	
is	essentially	serving	as	a	component	of	“Software	as	the	Service”.	

BOSC 2016 – Standards and Interoperability
Day One, 8 July 2016, 14:00 – 15:30
Session chair: Hilmar Lapp

This talk is accompanied by poster #6.

The Noctua Modeling Tool

Seth Carbon⇤, Heiko Dietze⇤, Chris Mungall⇤

17th Bioinformatics Open Source Conference (BOSC) 2016, Orlando, FL, USA

Website: http://noctua.berkeleybop.org
Repository: https://github.com/geneontology/noctua
License: BSD 3-Clause

We present Noctua, a modern web application and stack for modeling complex biology. Noctua directly
models information as a graph, escaping many of the pitfalls of more “tabular” modeling. Noctua also
presents a rich, interactive, and collaborative user interface, as well as a complete set of tooling for data
extraction and integration.

The Gene Ontology [1] project aims to create a comprehensive and up-to-date model of biological
systems based on annotating knowledge graphs (ontologies) with curated and generated information. Over
its existence, the project has aimed to capture this information with ever increasing richness and specificity.
The traditional storage format for GO annotations, the tabular GAF, has undergone several iterations, but
can no longer support the types of annotations required by current use cases. To move forward, the project
has adopted LEGO, a graph-base abstraction for modeling biology. The Noctua application and stack was
created to annotate information with the LEGO abstraction, but has the built-in flexibility to be used in
any number of pathway or workflow models.

The current main end user client application for Noctua presents a real-time collaborative graph editing
environment, allowing users to assemble graphs representing biological knowledge, including aspects such as
references and evidence. The user environment uses typed inputs combined with a click, drag, and connect
interface for easy and intuitive graph editing. As multiple users work on the same model, no matter the
client, it updates the common environment in real time, allowing for easy discussion, presentation, and
collaboration.

The Noctua stack is composed of three layers: the client, written in JavaScript using the jsPlumb and
AmiGO/BBOP libraries; the communication layer, written in JavaScript and providing client-to-client and
client-to-server communication; and the graph engine, a Java server that uses OWL to model and OWL
universe tools for reasoning. This stack is strongly separated, respecting protocol and common patterns. For
example, while the main user interface is a graph editor, it could be easily replaced by a di↵erent client that
could speak the same wire protocol–the flexibility of the framework allows for the easy creation of alternate
clients, such as the form or REPL based ones.

The Noctua stack is being actively used by the Gene Ontology, with the produced annotations finding
their way back into the pipelines of several model organism databases. As well, Noctua data produced for
the GO is loaded into AmiGO [2], where it is available for exploration and made available to be consumed
in clients via our JavaScript API. The data modeling and retrieval systems for the client are available as
separate packages, allowing third parties to create their own clients or embed annotation widgets in their
own resource pages.

References

[1] Gene Ontology Consortium: going forward. Nucl. Acids Res. 43, D1049D1056.

[2] AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288289.

⇤Berkeley Bioinformatics Open-source Projects, Lawrence Berkeley National Lab, Berkeley, CA, USA.

BOSC 2016 – Standards and Interoperability
Day One, 8 July 2016, 14:00 – 15:30
Session chair: Hilmar Lapp

Processing	phenotype	data	using	Phenopackets-API	and	PXFTools		

Christopher	J	Mungall1*,	Jules	Jacobsen2*,	James	Balhoff3,	Jeremy	Nguyen-Xuan1,	Kent	
Shefchek4,	Dan	Keith4,	Harry	Hochheiser5,	Suzanna	E	Lewis1,	Sebastian	Köhler6,	Peter	
Robinson6,	Julie	McMurray4,	Tudor	Groza7,	Melissa	Haendel4	

1	Lawrence	Berkeley	National	Laboratory,	Berkeley,	CA,	USA.	Email:	cjmungall@lbl.gov	
2	Sanger	Institute,	Hinxton,	UK.	
3	RTI	International,	Durham,	NC,	USA.	
4	Oregon	Health	and	Sciences	University,	Portland,	OR,	USA.	
5	University	of	Pittsburgh,	Pittsburgh,	PA,	USA.	
6	Charité	–	Universitätsmedizin	Berlin,	Germany.	
7	Garvan	Institute	of	Medical	Research,	Sydney,	Australia	
*These	authors	contributed	equally.	
	
Project	Website:	http://phenopackets.org	
Source	Code:	https://github.com/phenopackets		
License:	Code:	BSD-3.	Format	specification	and	documentation:	CC-BY-3	
	

While	great	strides	have	been	made	in	exchange	formats	for	genomic	sequence	and	variation	data	
(e.g.	Variant	Call	Format;	VCF),	the	same	is	not	true	for	phenotypic	features.	Similarly,	
bioinformatics	software	libraries	such	as	BioPython	and	BioPerl	have	rich	object	models	for	
genomic	or	phylogenetic	datatypes,	but	lack	a	uniform	phenotype	representation.	This	is	due	in	
part	to	the	diversity	of	phenotypic	descriptions,	from	clinical	observations	through	QTLs	and	newer	
high-throughput	phenopype	measurements.	As	a	result,	phenotypes	are	represented	differently	in	
different	databases,	making	it	harder	to	exchange,	aggregate	and	operate	over	phenotypic	data.	

We	have	designed	a	datamodel	and	exchange	format	standard	for	flexible,	extensible	and	
expressive	representation	of	a	broad	range	of	phenotypes	in	humans	or	any	other	species.	The	
Phenotype	eXchange	Format	(PXF)	works	hand-in-hand	with	phenotype	ontology	such	as	the	
Human	Phenotype	Ontology	or	the	Ontology	of	Biological	Attributes,	but	allows	for	representation	
of	other	fields	such	as	quantitative	measurements,	environments	and	evidence.	PXF	can	be	
serialized	as	either	JSON	or	YAML,	and	we	provide	JSON	schema	for	validation.	We	also	provide	a	
JSON-LD	context	for	use	within	semantic	web	and	OWL	stacks.	

For	software	developers	we	provide	the	Phenopacket	Application	Programmer	Interfaces	(APIs)	in	
Java,	Python	and	Javascript.	We	have	implemented	bindings	for	Neo4J	via	SciGraph	
(https://github.com/SciGraph/SciGraph),	but	the	model	is	storage-layer	independent	and	can	
potentially	be	used	in	conjunction	with	GMOD	databases	such	as	Chado.	We	are	also	prototyping	a	
language-independent	ProtoBuf-API	to	facilitate	interoperability	with	the	Global	Alliance	for	
Genomes	and	Health	(GA4GH)	stack.	

As	a	demonstration	of	purpose,	we	have	implemented	a	command	line	tool	library	called	pxftools,	
analogous	to	the	popular	vcftools	used	for	operating	over	variant	files.		

BOSC 2016 – Standards and Interoperability
Day One, 8 July 2016, 14:00 – 15:30
Session chair: Hilmar Lapp

This talk is accompanied by poster #7.

The EDAM Ontology

Jon Ison1, Hervé Ménager2, Matúš Kalaš3, EDAM contributors

1 Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Greater
Copenhagen, Denmark. Email: jison@cbs.dtu.dk
2 Institut Pasteur, Paris, France.
3 Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.

Project Website: http://edamontology.org
Source Code: https://github.com/edamontology/edamontology
License: CC BY-SA 4.0

Bioinformaticians handle an increasingly large and diverse set of tools and data. Meanwhile,
researchers demand ever more powerful and convenient means to organise, find, understand,
compare, select, use and connect the available resources. These tasks often rely on consistent,
machine-understandable descriptions of the underlying components, but these have been generally
lacking in ad hoc resource descriptions. The urgent need - filled by EDAM - is for an ontology that
unifies semantically the bioinformatics concepts in common use, provides the curator with a
comprehensive nomenclature that is broadly applicable, and enables new and powerful search,
browse and query functions.

EDAM is an ontology of well established, familiar concepts that are prevalent within bioinformatics,
including types of data and data identifiers, data formats, operations and topics. EDAM is a simple
ontology – essentially a set of concepts with terms, synonyms, definitions, and relations. EDAM is
organised into an intuitive hierarchy for convenient use by curators, software developers, and end-
users.

5 consecutive stable versions of EDAM have been released since July 2015, with version 1.14 being
the current one at the time of submission. EDAM is developed in a participatory and transparent
fashion, with a growing community of contributors, connected e.g. to the Bio.Tools registry
(http://bio.tools) of bioinformatics tools and data services, or to the development of various
bioinformatics workbenches.

BOSC 2016 – Standards and Interoperability
Day One, 8 July 2016, 14:00 – 15:30
Session chair: Hilmar Lapp

This talk is accompanied by poster #8.

Title Towards traceable, scriptable, and e�cient data distribution for next-generation genomics
Author John Bradley, Dan Leehr, Erich S. Huang, Jonathan Turner, Hilmar Lapp
A�liation Duke University, Center for Genomic and Computational Biology
Contact john.bradley@duke.edu
URLs https://github.com/Duke-GCB/DukeDSClient

https://github.com/Duke-GCB/DukeDSHandoverService
License MIT

At many research institutions, next-generation genomics data starts their lifecycle at a core facility. Depending
on the type of core this may be as primary data generated by instruments, or as secondary data generated
by analysis or other processing. From there, data will be handed over to a principal investigator, who
then derives scientific conclusions underpinned by the data and publishes them in scholarly journals. To be
consistent with open and reproducible science principles, this lifecycle creates a number of challenges, many
of which can be traced back to the shortcomings of distributing and sharing data via traditional, yet still
very common, networked block storage. In particular, (1) lifecycle progression, including key steps such as
handing over data from core to investigator, and depositing data for permanent archival in a repository, is
di�cult or impossible to formalize as a documented and programmable transaction; (2) the metadata, which
importantly includes tracing a data object’s entire provenance chain, are di�cult to track and tie to the data;
(3) versioning of data, including identifying in a globally unique way the data used for each analysis step, is
highly cumbersome at best. These challenges are further exacerbated by the large volume of data generated
by ever-evolving next-generation genomics technologies.

To enable these challenges to be addressed in a principled way, an interdisciplinary team at Duke University
is building an open-source informatics infrastructure for managing and tracking data at scale through its
lifecycle, called the Duke Data Service (DDS). DDS is inspired by years of experience developing and using
SAGE Bionetworks’ Synapse1, comes with an extensive API deployed publicly on the Heroku cloud, and for
storing, versioning, and identifying data federates across cloud-based and on-premise object store service
APIs, including AWS S3 and OpenStack Swift.

Here we report on our work using this infrastrucure to build scalable command line and user-interface tools for
digital genomics data during the lifecycle period from generation in a core facility to hand-o� to investigator.
We highlight how the tools e�ciently and traceably ingest and register data and their provenance; how
investigators can receive the data on high-performance computing environments; and how the object store
API enables parallelization of data streaming to better saturate available I/O bandwidth for high-volume
data. Finally, we will show how a web-based user-interface implemented on top of this infrastructrure can
formalize the hand-over of data from core to investigator as a documented transaction that signifies the
passing of data stewardship from one party to another.

References:

1. Omberg, Larsson, Kyle Ellrott, Yuan Yuan, Cyriac Kandoth, Chris Wong, Michael R. Kellen, Stephen H.
Friend, Josh Stuart, Han Liang, and Adam A. Margolin. 2013. “Enabling Transparent and Collaborative
Computational Analysis of 12 Tumor Types within The Cancer Genome Atlas.” Nature Genetics 45
(10): 1121–26.

1

BOSC 2016 – Data Science
Day Two, 9 July 2016, 10:45 – 12:30
Session chair: Heather Wiencko

This talk is accompanied by poster #9.

Mango: data exploration on large genomic datasets

Alyssa Morrow1, Eric Tu2, Frank Austin Nothaft3, Anthony Joseph4, David Patterson5
1
University of CaliforniaBerkeley, United States. Email: akmorrow@berkeley.edu

2
 University of CaliforniaBerkeley, United States. Email: erictu@berkeley.edu

3
University of CaliforniaBerkeley, United States. Email: fnothaft@berkeley.edu

4
University of CaliforniaBerkeley, United States. Email: adj@berkeley.edu

5
University of CaliforniaBerkeley, United States. Email: pattrsn@cs.berkeley.edu

Project Website: http://bdgenomics.org/
Source Code: https://github.com/bigdatagenomics/mango
License: Apache License 2.0 (see http://www.apache.org/licenses/LICENSE2.0.txt)

Current genomics visualization tools are intended for a single node environment and lack the scalability

required to visualize multiple whole genome samples. Data from the 1000 Genomes Project provides 1.6

terabytes of variant data and over 14 terabytes of alignment data. However, typical genomic visualizations

materialize less than 10 kbp, only 3.3e7% of the genome. Mango is a visualization browser that

selectively materializes and organizes genomic data to provide fast inmemory queries. Mango

materializes data from persistent storage as the user requests different regions of the genome. This data is

efficiently partitioned and organized in memory using interval trees. This interval based organizational

structure supports ad hoc queries, filters, and joins across multiple samples at a time, enabling exploratory

interaction with genomic data.

Mango is built on top of Spark and ADAM, both open source projects under the Apache license.

Leveraging Spark as Mango’s cluster computing framework enables scalable, distributed computations on

terabytes of genomic data. Mango leverages ADAM’s genomic file formats which can be stored in

persistent storage and accessed by Spark. Both ADAM and Mango are part of the Big Data Genomics

project at University of CaliforniaBerkeley. Mango is published under the Apache 2 license.

BOSC 2016 – Data Science
Day Two, 9 July 2016, 10:45 – 12:30
Session chair: Heather Wiencko

ADAM Enables Distributed Analyses Across

Large Scale Genomic Datasets

Frank Austin Nothaft1,2, Arun Ahuja3, Timothy Danford1,4, Michael Heuer1, Jey Kottalam1, Matt Massie1,

Audrey Musselman-Brown5, Beau Norgeot5,6, Ravi Pandya7, Justin Paschall1, Jacob Pfeil5, Hannes Schmidt5,

Eric Tu1, John Vivian5, Ryan Williams3, Carl Yeksigian8, Michael Linderman3, Je↵ Hammerbacher3,

Uri Laserson3,9, Gaddy Getz10, David Haussler5, Benedict Paten5, Anthony D. Joseph1, David A. Patterson1,2

Website: http://bdgenomics.org

Repositories: https://github.com/bigdatagenomics/adam and https://github.com/BD2KGenomics/toil-scripts

License: Apache 2 License

The detection and analysis of rare genomic events requires integrative analysis across large cohorts with
terabytes to petabytes of genomic data. Contemporary genomic analysis tools have not been designed for this
scale of data-intensive computing. This abstract presents recent updates to ADAM, an Apache 2 licensed
library built on top of the popular Apache Spark distributed computing framework. We are using ADAM
and the Toil workflow management system (Apache 2 licensed) to recall the Simons Genome Diversity
project dataset against the GRCh38 build of the human reference genome. Because ADAM is designed to
allow genomic analyses to be seamlessly distributed across large clusters, we achieve a 3.5⇥ improvement
in end-to-end variant calling latency and a 66% cost improvement over current toolkits, without sacrificing
accuracy.

On top of our previous results [1], we have achieved an additional 2–3⇥ improvement in performance by
modifying the schemas that ADAM uses. In addition to improving performance, these modifications address
the problem of storing and processing metadata (e.g., information about a reference genome build) inline
with an analysis. To run our workflow at large scale, we use the Toil workflow system. Toil is a system for
running arbitrary computation that can be structured as a directed acyclic graph across various di↵erent
schedulers. Toil provides fault tolerance, and supports computational reproducibility and portability. We
build upon Toil to enable dynamic scaling of Spark clusters using the AWS spot market. Our end-to-end
variant calling pipeline allocates machines on an as-needed basis to improve cost e↵ectiveness, and allows
the use of Apache Spark in a workflow with traditional, single node bioinformatics tools.

References

[1] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yeksigian, J. Kottalam, A. Ahuja,
J. Hammerbacher, M. Linderman, M. Franklin, A. D. Joseph, and D. A. Patterson. Rethinking data-
intensive science using scalable analytics systems. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15). ACM, 2015.

1AMPLab, University of California, Berkeley, CA
2ASPIRE Lab, University of California, Berkeley, CA
3Icahn School of Medicine at Mount Sinai, New York, NY
4Tamr, Cambridge, MA
5Genome Informatics Lab, University of California, Santa Cruz, CA
6University of California, San Francisco, CA
7Microsoft Research, Redmond, WA
8GenomeBridge, Cambridge, MA
9Cloudera, Inc., San Francisco, CA

10The Broad Institute of MIT and Harvard, Cambridge, MA
Correspondence should be addressed to fnothaft@berkeley.edu.

1

BOSC 2016 – Data Science
Day Two, 9 July 2016, 10:45 – 12:30
Session chair: Heather Wiencko

SUPERSMART - A Self-Updating platform for Estimating Rates of

Speciation and Migration, Ages, and Relationships of Taxa

Hannes Hettling ⇤ Alexandre Antonelli †, ‡ Rutger A. Vos ⇤

17th Bioinformatics Open Source Conference (BOSC) 2016, Orlando, FL, USA

Website: http://www.supersmart-project.org

Repository: https://github.com/naturalis/supersmart

License: MIT license (see https://opensource.org/licenses/MIT)

Background

Massive volumes of biological data, including molecular sequences and fossils, are accumulating quickly and
are frequently made available in public repositories. This wealth of data facilitates large-scale quantitative
analyses reveiling the evolutionary mechanisms that generate biodiversity. However, exploiting the data to
generate time-calibrated phylogenies that represent the evolutionary relationships and history among species
is generally a time-consuming and error-prone procedure involving a variety of di↵erent analysis tools.

Results

Here we present the SUPERSMART virtual research environment which provides an integrative solution
for automated mining, cleaning and assembly of molecular sequencing data and the inference of large,
time-calibrated species phylogenies. Phylogenetic inference for large numbers of taxa and sequence data
is accomplished by a recursive divide-and-conquer approach implemented in our platform, engineered for
massive parallelization. Our software is therefore scalable to build phylogenies for tens of thousands of taxa.
SUPERSMART comprises state-of-the-art analysis tools for taxonomic name resolution, sequence align-
ment (e.g. muscle, ma↵t), maximum likelihood and Bayesian tree inference (RaXML, ExaML, ExaBayes,
*BEAST) and molecular dating (TreePL, *BEAST). Deployment of the platform including the above tools
is accomplished using the virtualization frameworks Docker and Vagrant, rendering the installation of any
dependencies unnecessary. A graphical user interface to SUPERSMART is provided via Galaxy web services.
The core of SUPERSMART is implemented in Perl/BioPerl in a highly modular fashion. In the future, we
aim to integrate single SUPERSMART modules, such as wrappers for the above analysis tools, into the OBF
BioPerl library.

Conclusions

SUPERSMART is an integrated platform for data mining and phylogenetic inference workflows. From simply
a list of taxa of interest, users can generate dated species phylogenies in merely a few steps. Our software
is easily deployable, platform independent and can run on personal computers and high-performance cluster
infrastructures. SUPERSMART is originally a command-line application but can alternatively be accessed
through Galaxy. Thereby, we give low-threshold access to phylogenetic inference workflows to researchers
with little computer expertise.

⇤Naturalis Biodiversity Center, Darwinweg 4, 2333 CR Leiden, the Netherlands. Email: hannes.hettling@naturalis.nl
†University of Gothenburg, Department of Biological and Environmental Sciences, Box 461, SE-405 30 Gothenburg, Sweden
‡Gothenburg Botanical Garden, Carl Skottsbergs gata 22A, SE-41319, Gothenburg, Sweden

BOSC 2016 – Data Science
Day Two, 9 July 2016, 10:45 – 12:30
Session chair: Heather Wiencko

Title: Characterization of the small RNA transcriptome using the
bcbio-nextgen python framework
Authors: Lorena Pantano, Brad Chapman, Rory Kirchner, John
Hutchinson, Oliver Hofmann, Shannan Ho Sui
A�liations Harvard T.H. Chan School of Public Health, Boston. Wolfson
Wohl Cancer Research Centre
Contact: lpantano@hsph.harvard.edu
Project: https://github.com/chapmanb/bcbio-nextgen
License: MIT

The study of small RNA helps us understand some of the complexity of gene
regulation of a cell. Of the di�erent types of small RNAs, the most important in
mammals are miRNA, tRNA fragments and piRNAs. The advantage of small
RNA-seq analysis is that we can study all small RNA types simultaneously,
with the potential to detect novel small RNAs. bcbio-nextgen is a community-
developed Python framework that implements best practices for next-generation
sequence data analysis and uses gold standard data for validation. We have
extended bcbio to include a small RNA-seq analysis pipeline that performs quality
control, removal of adapter contamination, annotation of miRNA, isomiRs and
tRNAs, novel miRNA discovery, and genome-wide characterization of other types
of small RNAs. The pipeline integrates tools such as miRDeep2[1], seqbuster[2],
seqcluster[3] and tdrMapper[4] to facilitate annotation to small RNA categories.
It produces a R Markdown template that helps with downstream statistical
analyses in R, including quality control metrics and best practices for di�erential
expression and clustering analyses. Finally, the pipeline generates an interactive
HTML-based browser for visualization purposes. This is useful for characterizing
novel small RNA types, working with non-model organisms, or providing a
general profiling description. This browser shows the small RNA regions along
with their genomic annotation, expression profile over the precursor, secondary
structure, and the top expressed sequences. Here, we show the capabilities of the
pipeline and validation using data from the miRQC project. We show that the
quantification accuracy is around 95% for miRNAs. We obtained similar results
for other types of small RNA molecules, demonstrating that we can reliably
detect small RNAs without a dependency on specific databases.

[1] Friedlander, M. R., MacKowiak, S. D., Li, N., Chen, W., & Rajewsky, N.
(2012). MiRDeep2 accurately identifies known and hundreds of novel microRNA
genes in seven animal clades. Nucleic Acids Research, 40(1), 37–52.

[2] Pantano, L., Estivill, X., & Martí, E. (2010). SeqBuster, a bioinformatic
tool for the processing and analysis of small RNAs datasets, reveals ubiquitous
miRNA modifications in human embryonic cells. Nucleic Acids Research, 38(5),
e34

[3] Pantano, L., Friedlander, M. R., Escaramis, G., Lizano, E., Pallares-Albanell,

1

BOSC 2016 – Data Science
Day Two, 9 July 2016, 10:45 – 12:30
Session chair: Heather Wiencko

This talk is accompanied by poster #10.

MetaR: simple, high-level languages for data analysis with
the R ecosystem
Fabien	Campagne1,2,3,*, William	ER	Digan1, Manuele	Simi1,2
1The	 HRH	 Prince	 Alwaleed	 Bin	 Talal	 Bin	 Abdulaziz	 Alsaud	 Institute	 for	 Computational	
Biomedicine,	 Weill	 Cornell	 Medicine,	 New	 York,	 NY,	 United	 States	 of	 America;	 2Clinical	
Translational	Science	Center,	Weill	Cornell	Medicine,	New	York,	NY,	United	States	of	America;	
3Department	of	Physiology	and	Biophysics,	Weill	Cornell	Medicine,	New	York,	NY,	United	States	
of	 America.	 *To whom correspondence should be addressed:
fac2003@campagnelab.org	
	

Keywords:	Data	Analysis,	Reproducibility,	Docker,	Language	Workbench	Technology	

Data analysis tools have become essential to the study of biology. Here, we applied
language workbench technology (LWT) to create data analysis languages tailored for
biologists with a diverse range of experience: from beginners with no programming
experience to expert bioinformaticians and statisticians.

A key novelty of our approach is its ability to blend user interface with scripting in a
single platform. This feature helps beginners and experts alike analyze data more
productively.

This new approach has several advantages over state of the art approaches currently
popular for data analysis: experts can design simplified data analysis languages that
require no programming experience, and behave like graphical user interfaces, yet have
the advantages of scripting. We report on such a simple language, called MetaR [1],
which we have used to teach complete beginners how to call differentially expressed
genes and build heatmaps. We found that beginners can complete this task in less than
2 hours with MetaR, when more traditional teaching with R and its packages would
require several training sessions (6-24hrs). Furthermore, MetaR seamlessly integrates
with docker to enable reproducibility of analyses and simplified R package installations
during training sessions.

We used the same approach to develop the first composable R language. A composable
language is a language that can be extended with micro-languages. We illustrate this
capability with a Biomart micro-language designed to compose with R and help R
programmers query Biomart interactively to assemble specific queries to retrieve data,
(The same micro-language also composes with MetaR to help beginners query Biomart.)

Our teaching experience suggests that language design with LWT can be a compelling
approach for developing intelligent data analysis tools and can accelerate training for
common data analysis task. LWT offers an interactive environment with the potential to
promote exchanges between beginner and expert data analysts. This talk will provide an
introduction to LWT and describe our results with the MetaR platform [1,2].

Software is distributed under the Apache 2.0 license and available at
https://github.com/CampagneLaboratory/MetaR and http://metaR.campagnelab.org.

References: [1] Fabien Campagne, William ER Digan, Manuele Simi. MetaR: simple,
high-level languages for data analysis with the R ecosystem. BioRxiv doi:
http://dx.doi.org/10.1101/030254 [2] Documentation http://tinyurl.com/zx9wvjw			

BOSC 2016 – Data Science
Day Two, 9 July 2016, 10:45 – 12:30
Session chair: Heather Wiencko

This talk is accompanied by poster #11.

Development of NGSEP as an open-source comprehensive
solution for analysis of high throughput sequencing data

Juan Fernando de la Hoz, Juan David Lobaton, Claudia Perea, Daniel Felipe Cruz,
Juan Camilo Quintero, Paulo Izquierdo, Bodo Raatz and Jorge Duitama

1 International Center for Tropical Agriculture (CIAT), Cali, Colombia. Email:
j.duitama@c giar.org

Project Website: https://sourceforge.net/p/ngsep/wiki/Home/
Source Code: https://sourceforge.net/projects/ngsep/files/SourceCode/
License: GNU General Public License, version 3 (GPL-3.0)
(https://opensource.org/licenses/GPL-3.0)

The development and availability of high throughput sequencing (HTS) technologies
revolutionized the research on genomics allowing to obtain genome-wide data on
entire populations of nearly every form of life. A key step to extract relevant
information from HTS data was the development of open-source software tools to
perform different bioinformatic analyses. However, although even small labs are
now able to efficiently produce large amounts of HTS data, comprehensive analysis
of these data integrating different solutions remains a challenging task. We initially
developed NGSEP as an open-source package that tightly integrates novel java
implementations of algorithms for discovery of single nucleotide variants (SNVs),
indels, and copy number variants (CNVs), called from a rich interface implemented
in an Eclipse Plugin as well as basic command line usage. We built several functions
to facilitate users processing HTS reads and genotype calls, including a one step
wizard for parallel automated processing of entire populations, genotype filters and
statistics, imputation for inbred populations and format conversion for integration
with tools for assessment of population structure, GWAS, genomic prediction,
among others. Benchmark using first Whole Genome Sequencing (WGS) data from
human, yeast and rice samples and later Genotype by Sequencing (GBS) data from
cassava and bean populations showed that NGSEP provides similar or better
accuracy for SNP detection and genotyping compared to other tools such as GATK,
Samtools and Tassel. NGSEP is now a useful software package for different research
groups, as demonstrated by download statistics and recent scientific publications.

Continuing our efforts, we implemented in NGSEP three new algorithms to find
structural variants (SVs) from WGS data: CNV-seq, for read-depth comparison
between two samples; EWT to detect small CNVs; and a novel implementation of
the read-pair and split-read strategies for detection of large indels with breakpoint
resolution. Experiments with simulated data show that these functions provide
similar accuracies compared to other tools such as Delly or Pindel. We now re-
branded NGSEP as Next Generation Sequencing Experience Platform because we
expanded the interfaces of NGSEP improving its documentation for command line
usage and its integration with the Galaxy environment. We also made NGSEP
available within the CyVerse (former iPlant) platform and we integrated the variants
detector within the DNAnexus platform for SV discovery in the 3000 rice genomes
project. We expect that all these development efforts facilitate the use of NGSEP for
a growing number of researchers in different fields of basic and applied genomics.

BOSC 2016 – Data Science
Day Two, 9 July 2016, 10:45 – 12:30
Session chair: Heather Wiencko

This talk is accompanied by poster #12.

GRNmap and GRNsight: open source software for dynamical systems modeling and visualization
of medium-scale gene regulatory networks

Kam D. Dahlquist1, Ben G. Fitzpatrick2, John David N. Dionisio3, Nicole A. Anguiano1,3, Juan S.
Carrillo2,3, Trixie Anne M. Roque2, Anindita Varshneya1,3, Mihir Samdarshi1, and Chukwuemeka Azinge3

1Department of Biology, 2Department of Mathematics, 3Department of Electrical Engineering &
Computer Science, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045 USA

Email: kdahlquist@lmu.edu
Project Websites: http://kdahlquist.github.io/GRNmap/ and http://dondi.github.io/GRNsight/
Source Code: https://github.com/kdahlquist/GRNmap/ and https://github.com/dondi/GRNsight
License: BSD license, https://github.com/kdahlquist/GRNmap/blob/master/LICENSE and
https://github.com/dondi/GRNsight/blob/master/LICENSE.txt

A gene regulatory network (GRN) consists of genes, transcription factors, and the regulatory
connections between them that govern the level of expression of mRNA and proteins from those genes.
Over a period of several years, our group has developed a MATLAB software package, called GRNmap,
that uses ordinary differential equations to model the dynamics of medium-scale GRNs. The program
uses a penalized least squares approach (Dahlquist et al. 2015, https://doi.org/10.1007/s11538-015-0092-
6) to estimate production rates, expression thresholds, and regulatory weights for each transcription factor
in the network based on gene expression data, and then performs a forward simulation of the dynamics of
the network. GRNmap has options for using a sigmoidal or Michaelis-Menten production function.
Although originally developed for yeast data, the model is broadly applicable to any species. The large
number of developers and time span of development led to a code base that was difficult to revise and
adjust. We therefore brought the code under version control in a GitHub repository and refactored the
script-based software with global variables into a function-based package that uses an object to carry
relevant information from function to function. This modular approach allows for cleaner, less ambiguous
code and increased maintainability. We standardized the format of the input and output Excel workbooks,
adding an optimization diagnostics output worksheet which includes both the actual and theoretical
minimum least squared error overall, and the mean squared errors for the individual genes. The
MATLAB compiler was used to create an executable that can be run on any Windows machine without
the need of a MATLAB license. Finally, we have implemented test-driven development for new features,
and are improving the test coverage of previous code.

GRNsight is an open source web application for visualizing such models of gene regulatory
networks (Dahlquist et al. 2016, https://doi.org/10.7287/peerj.preprints.2068v1). GRNsight accepts
GRNmap- or user-generated spreadsheets containing an adjacency matrix representation of the GRN and
automatically lays out the graph of the GRN model. It is written in JavaScript, with diagrams facilitated
by D3.js. Node.js and the Express framework handle server-side functions. GRNsight’s diagrams are
based on D3.js’s force graph layout algorithm, which was then extensively customized. GRNsight uses
pointed and blunt arrowheads, and colors the edges and adjusts their thicknesses based on the sign
(activation or repression) and magnitude of the GRNmap weight parameter. Visualizations can be
modified through manual node dragging and sliders that adjust the force graph parameters. From the early
stages, GRNsight has had a unit testing framework using Mocha and the Chai assertion library to perform
test-driven development where unit tests are written before new functionality is coded. This framework
consists of over 160 automated unit tests that examine over 450 test files to ensure that the program is
running as expected. Error and warning messages inform the user what happened, the source of the
problem, and possible solutions. Together, the life cycle of these two programs illustrates the differences
between the cultures of mathematics and computing, the challenges and benefits of bringing an existing
code base up to open development standards (GRNmap), and the advantages of starting a project using
best practices from the beginning (GRNsight). Our goal is to facilitate reproducible research.

BOSC 2016 – Developer tools and libraries
Day Two, 9 July 2016, 14:00 – 14:40
Session chair: Chris Fields

Biopython Project Update 2016

Christian Brue↵era, Tiago Antãob, Peter Cockc, Eric Talevichd, Michiel de Hoone, Wibowo
Arindrartof, Leighton Pritchardc, Anuj Sharmag, Eric Rascheh, Aaron Rosenfeldi, Connor T.

Skennertonj, Marco Galardinik, Markus Piotrowskil, and the Biopython Contributors

17th Bioinformatics Open Source Conference (BOSC) 2016, Orlando, USA

Website: http://biopython.org
Repository: https://github.com/biopython/biopython
License: Biopython License Agreement (MIT style, see http://www.biopython.org/DIST/LICENSE)

The Biopython Project is a long-running distributed collaborative e↵ort, supported by the Open Bioin-
formatics Foundation, which develops a freely available Python library for biological computation [1].

We present here details of the latest Biopython release - version 1.66. New features include: extended
Bio.KEGG and Bio.Graphics modules to support drawing KEGG pathways with transparency; extended
“abi” Bio.SeqIO parser to decode almost all documented fields used by ABIF instruments; a QCPSuper-
imposer module using the Quaternion Characteristic Polynomial algorithm for superimposing structures to
Bio.PDB; and an extended Bio.Entrez module to implement the NCBI Entrez Citation Matching function
and to support NCBI XML files with XSD schemas. Additionally we fixed miscellaneous bugs, enhanced
our test suite and continued our e↵orts to abide by the PEP8 coding style guidelines.

We are currently preparing a new release – version 1.67 – that will deprecate the ability to compare
SeqRecord objects with “==”, which sometimes lead to surprising results. In addition it will feature a new
experimental Bio.phenotype module for working with Phenotype Microarray data; updates to Bio.Data to
include NCBI genetic code table 25, covering Candidate Division SR1 and Gracilibacteria; an update to
Bio.Restriction to include the REBASE May 2016 restriction enzyme list; updates to BioSQL to use foreign
keys with SQLite3 databases; as well as corrections to the Bio.Entrez module and the MMCIF structure
parser.

Our website has been migrated from MediaWiki to GitHub Pages and is now under version control. The
continuous integration process on GitHub has been enhanced by including external services like Landscape,
Quantified Code and Codecov to perform quality review, test coverage analysis and generation of quality
metrics.

Finally, our range of Docker containers has been greatly enhanced. In addition to a basic container that
includes Python 2 and 3 with Biopython and all its dependencies, as well as a BioSQL container, we now
also provide two versions of Jupyter notebook containers: a basic one, and a version including the Biopython
tutorial as notebooks.

References

[1] Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamelryck, T.,
Kau↵, F., Wilczynski, B., de Hoon, M.J. (2009) Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics 25(11) 1422-3. doi:10.1093/bioinformatics/btp163

aDepartment of Clinical Sciences, Lund University, Lund, SE. Email: christian.brue↵er@med.lu.se
bDivision of Biological Sciences, University of Montana, Montana, USA
cInformation and Computational Sciences, James Hutton Institute (formerly SCRI), Invergowrie, Dundee, UK
dDepartment of Dermatology, University of California San Francisco, San Francisco, CA, USA
eDivision of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, JP
fSequencing Analysis Support Core, Leiden University Medical Center, Leiden, NL
gDepartment of Informatics and Telecommunications, University of Athens, Athens, Greece
hCenter for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, USA
iDepartment of Biomedical Engineering, Science & Health Systems, Drexel University, USA
jDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
kEMBL-EBI, Wellcome Trust Genome Campus, Cambridge, UK
lDepartment of Plant Physiology, Ruhr-Universität Bochum, DE

BOSC 2016 – Developer tools and libraries
Day Two, 9 July 2016, 14:00 – 14:40
Session chair: Chris Fields

This talk is accompanied by poster #13.

Sequenceserver:	a	modern	graphical	user	interface	for	custom	BLAST	
databases	

Anurag	Priyam1,2,3*,	Ben	J.	Woodcroft	3,	Vivek	Rai	3,	Alekhya	Munagala	3,	Ismail	Moghul	3,	Filip	
Ter	3,	Mark	Anthony	Gibbins	3,	HongKee	Moon	3,	Guy	Leonard	3,	Wolfgang	Rumpf	3,	Yannick	
Wurm1,3	

1	School	of	Biological	and	Chemical	Sciences,	Queen	Mary	University	of	London,	UK.	
2	Current:	William	Harvey	Research	Institute,	Queen	Mary	University	of	London,	UK.	
3	AfRiliation	omitted	due	to	lack	of	space.	

*	Email:	anurag08priyam@gmail.com	

Project	Website:	http://sequenceserver.com	
Source	Code:	https://github.com/wurmlab/sequenceserver	
License:	AGPL	v3	

Main	Text	of	Abstract	
The	dramatic	drop	in	DNA	sequencing	costs	has	created	many	opportunities	for	novel	research	that	
require	comparing	newly	obtained	and	previously	known	sequences.	This	is	commonly	done	with	
BLAST,	yet	using	BLAST	directly	on	new	datasets	requires	substantial	technical	skills	or	helpful	
colleagues.	Furthermore,	graphical	interfaces	for	BLAST	are	challenging	to	install	and	largely	mimic	
underlying	computational	processes	rather	than	work	patterns	of	researchers.	
We	combined	a	user-centric	design	philosophy	with	sustainable	software	development	approaches	to	
create	Sequenceserver.	The	innovations	in	Sequenceserver	over	other	BLAST	servers	are	at	three	
levels.	First,	our	software	can	be	rapidly	installed	and	used	on	custom	datasets	for	individual	use	or	
sharing	with	a	community.	Second,	by	analysing	user	input	and	using	simple	algorithms,	
Sequenceserver	reduces	the	amount	of	decisions	the	user	must	make,	provides	interactive	visual	
feedback,	and	prevents	common	potential	errors	that	would	otherwise	cause	erroneous	results.	
Finally,	Sequenceserver	provides	multiple	highly	visual	and	text-based	output	options	that	mirror	the	
requirements	and	work	patterns	of	researchers.	
The	result	of	our	approach	has	been	quite	successful	as	demonstrated	by	>27	mentions	of	the	software	
in	peer-reviewed	publications.	We	believe	the	software,	our	user-centric	design	philosophy,	
community	building	and	sustainable	development	approach,	and	the	customisable	codebase	will	be	of	
signiRicant	interest	to	the	OBF	community.	

BOSC 2016 – Developer tools and libraries
Day Two, 9 July 2016, 14:00 – 14:40
Session chair: Chris Fields

This talk is accompanied by poster #14.

Title Linuxbrew and Homebrew-Science to Navigate the Software Dependency Labyrinth
Author Shaun Jackman, Inanc Birol
A�liation Genome Sciences Centre, British Columbia Cancer Agency
Contact sjackman@bcgsc.ca
URL http://linuxbrew.sh/, https://github.com/Homebrew/homebrew-science
License BSD 2-Clause
Keywords software installation, package manager, open source, reproducible research, high

performance computing

Installing software is at best a tedious experience, and is often a distressing experience. Each operating system
(OS) provides its own package manager to install software and manage dependencies: for example, apt-get and
yum for the various distributions of Linux, and Homebrew is popular for Mac OS. Using the package manager
provided by the system is not however without its own set of challenges. The system’s package manager may
require administrator access to the machine, which is typically not available on high performance computing
clusters. It installs versions of software from the era of the OS, and clusters are notorious for running ancient
distributions of Linux. Current bioinformatics software is often not yet packaged and provided only as source.
Compiling software from source can vary from di�cult to impossible, for example when the compiler and
libraries provided by the operating system are a decade old. Manually navigating the recursive dependency
chain of the tool and its dependencies, and their dependencies, can feel like a labyrinth with no end, and can
even result in conflicting dependencies that are mutually exclusive and impossible to satisfy.

Linuxbrew is a package manager for Linux derived from Homebrew, the Mac OS package manager. It is
a cross-platform utility, compatible with any distribution of Linux and version of Mac OS released in the
last decade, allowing you to use the same package manager on both your Linux server and your Mac laptop.
It can be installed in your home directory, and does not require administrator access. Using Linuxbrew,
challenging tasks are made easy; for example installing a modern compiler in your home directory takes a few
minutes, even on an ancient distribution of Linux.

Homebrew-Science is a collection of scientific software packages installable by either Linuxbrew or Homebrew.
A third of the 600 software packages available on Homebrew-science are bioinformatics tools. Software
packages are maintained up-to-date by a fervent community of over 400 contributors, and the scripts to
install historical versions of software are retained in version control.

Repeating an analysis of data starts with obtaining the original data and installing the software used for that
analysis. Linuxbrew streamlines the installation of software in a repeatable fashion. Having the data and
software is not itself su�cient, but is certainly a necessary component of reproducible science.

1

BOSC 2016 – Developer tools and libraries
Day Two, 9 July 2016, 14:00 – 14:40
Session chair: Chris Fields

This talk is accompanied by poster #15.

SnoVault and encodeD: A novel object-based storage system and applications to
ENCODE metadata	
Benjamin C. Hitz1 (hitz@stanford.edu)
Laurence D. Rowe1, Nikhil R. Podduturi1, David I. Glick1, Ulugbek K. Baymuradov1, Venkat
S. Malladi3, Esther T. Chan1, Jean M. Davidson1, Idan Gabdank1, Aditi K.
Narayana1, Kathrina C. Onate1, Marcus C. Ho1, Brian T. Lee2, Stuart R. Miyasato1, Timothy
R. Dreszer1, Cricket A. Sloan1, J. Seth Strattan1, Forrest Y. Tanaka1, Eurie L. Hong4, and J.
Michael Cherry1 *

1Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA, and 2Center for
Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz, Santa Cruz, CA
95064, USA
	
Project	Website:	https://www.encodeproject.org	
Source	Code:	https://github.com/ENCODE-DCC/encoded,	https://github.com/ENCODE-
DCC/snovault	
License:	MIT	
	

Main	Text	of	Abstract	

The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort[1–6] to
create a comprehensive catalog of functional elements initiated shortly after the completion of
the Human Genome Project[7][1]. The current database exceeds 5500 experiments across
more than 350 cell lines and tissues using a wide array of experimental techniques to study the
chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus
genomes. All ENCODE experimental data, metadata, and associated computational analyses
are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage,
and distribution to community resources and the scientific community. As the volume of data
increases, the identification and organization of experimental details becomes increasingly
intricate and demands careful curation. The ENCODE DCC[8–10] has created a general
purpose software system, known as SnoVault, that supports metadata and file submission, a
database used for metadata storage, web pages for displaying the metadata and a robust API
for querying the metadata. The software is fully open-source, code and installation instructions
can be found at: http://github.com/ENCODE-DCC/snovault/. The core database engine,
SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data)
has been released as a separate Python package.	
	

BOSC 2016 – Open Science and Reproducibility
Day Two, 9 July 2016, 14:40 – 15:30
Session chair: Peter Cock

This talk is accompanied by poster #16.

Title State of the openSNP.org Union: Dockerizing, Crowdfunding & Opening for Contributors
Author Bastian Greshake, Philipp E. Bayer, Helge Rausch, Lore Mroz, Julia Reda
A�liation openSNP.org
Contact info@opensnp.org
URL the project and the code
License Code: MIT License, Data: CC-Zero

openSNP is a central open-data repository for people who got their genomes analyzed through Direct-To-
Consumer (DTC) genetic testing channels. The project allows people to publish their genetic data, along
with phenotypic annotations and quantified self data, into the public domain using a Creative Commons Zero
license. openSNP o�ers annotations for the tested genetic variants, by mining di�erent public and open data
sets, such as the Public Library of Science, SNPedia, Mendeley and more.

Since our presentation last year, at BOSC2015, our database has grown even further, from nearly 1,700 data
sets to now over 2,500 published genotypes. Additionally there are now over 370 di�erent phenotypes listed
for which over 38,000 annotations were entered. This makes openSNP one of the largest data resources of
this type. With this data the project actively contributes to the discussion on open human genetic data, such
as bioethical implications and privacy research, genealogy, teaching, pharmacogenomics and even art.

Unlike many other projects of its kind, openSNP is not hosted or supported by any university or other
academic institution. Instead it is completely driven and maintained by the community of people sharing and
using it. This means that the project is facing some unique problems. Due to this, we had to make 2015 a
year of consolidation.

With the increasing growth of the database, we had to optimize our infrastructure. On the technical side this
meant moving from a monolithic server-based installation to running in multiple Docker containers, hosted
on 3 small virtual servers, optimized to specific tasks. But upgrading our server infrastructure also meant
that the project could not be funded solely by our core team’s day jobs any longer.

Instead of relying only on o�cial funding bodies or corporate sponsors we chose to turn to crowd-funding via
the platforms of Patreon and Gratipay, which both allow for recurring donations by individuals. Since the
beginning of the campaign in autumn 2015 we could win around 30 people to contribute financially. Thanks
to this, we can now pay our infrastructure costs for running the project through the cumulative e�orts of
small donations from the crowd. Furthermore we got one corporate contributor on board, but decided to
limit its contributions in order to stay independent.

In this talk we will give a small summary of how we performed our infrastructural updates, managed to run
a successful crowdfunding campaign, the political implications of corporate sponsorship and how we prepared
for new contributors.

1

BOSC 2016 – Open Science and Reproducibility
Day Two, 9 July 2016, 14:40 – 15:30
Session chair: Peter Cock

This talk is accompanied by poster #17.

The$GenePattern$Notebook$Environment$
!
Michael!Reich1,!Thorin!Tabor2,!Ted!Liefeld1,!Barbara!Hill2,!Helga!Thorvaldsdottir2,!Jill!P.!Mesirov1!
!
1!University!of!California,!San!Diego,!La!Jolla!CA!92093!Email:!mmreich@ucsd.edu!
2!Broad!Institute,!Cambridge!MA!02142!
!
Project$Website:!! http://www.genepattern.org/genepatternQnotebooks!
Source$Code:!! ! https://github.com/genepattern/genepatternQnotebook!
License:!! ! BSDQstyle,!see!https://github.com/genepattern/genepatternQ

notebook/blob/master/LICENSE.txt!
!
!
Interactive! notebook! systems! have! made! significant! strides! toward! realizing! the! potential! of!
reproducible! research,! providing! environments! where! users! can! interleave! descriptive! text,!
mathematics,! images,!and!executable!code! into!a!“live”!sharable,!publishable!“research!narrative.”!
However,! many! of! these! systems! require! knowledge! of! Python,! R,! or! another! programming!
language!and!are!therefore!out!of!the!reach!of!nonQprogramming!genomic!researchers.!!!
!
To!address! this!gap,!we!have!developed! the!GenePattern!Notebook!environment,!which!connects!
the!popular!Jupyter!Notebook!system!to!the!GenePattern!platform!for!integrative!genomics,!making!
the!hundreds!of!bioinformatics!analysis!methods!in!GenePattern!available!within!the!powerful!and!
flexible!Jupyter!Notebook!interface.!GenePattern!provides!domainQspecific!methods!for!the!analysis!
of! gene! expression! (RNAQseq! and! microarray),! sequence! variation,! proteomics,! and! genomic!
networks,! as! well! as! general! machine! learning! methods! for! clustering,! classification,! and!
dimensionality! reduction,! and! utility! methods! for! data! import,! formatting! and! preprocessing.!
GenePattern! includes! methods! adapted! from! many! popular! open! source! libraries,! including!
Bioconductor! and! scikitQlearn.! Through! its! moduleQbased! architecture,! GenePattern! also! allows!
users! to! easily! add! their! own! tools,! automatically! making! them! available! within! the! notebook!
environment.!
!
The!GenePattern!Notebook!environment! consists!of! a!plugin! that!provides!access! to!GenePattern!
from!within! Jupyter! Notebook,! a! collection! of! notebook! documents! that! demonstrate! the! use! of!
GenePattern!Notebook! in!various!analysis! scenarios!and!which!can!be!adapted! for!a! researcher’s!
individual! use,! and! a!web! site! (in! development)!where! users! can! create,! share,! run,! and! publish!
their!own!notebooks.!The!plugin! is! implemented!as!an!extension! to! the! Jupyter!Notebook!system!
that! provides! a! new! “GenePattern”! cell! type,! which! allows! users! to! log! in! to! any! available!
GenePattern!server,!select!any!available!analysis,!and!configure!and!execute!it.!Results!are!available!
to! downstream! analyses,! which! can! be! either! additional! GenePattern! method! cells! or! standard!
Jupyter!Notebook!code!cells.!GenePattern!Notebook!is!currently!available!as!a!Docker!image!and!as!
an!installation!from!the!Python!Package!Index!(PyPI).!!!
!
This! talk! will! describe! how! the! GenePattern! Notebook! environment! extends! the! analytical! and!
reproducible! research! capabilities! of! Jupyter!Notebook! and!GenePattern,! how! using! GenePattern!
Notebook! obviates! the! need! for! coding! in! many! analysis! cases,! and! will! demonstrate! genomic!
analyses!within!GenePattern!notebooks.!
!!

BOSC 2016 – Open Science and Reproducibility
Day Two, 9 July 2016, 14:40 – 15:30
Session chair: Peter Cock

Reproducible	Computational	Workflows	with	Continuous	Analysis	

Brett	K	Beaulieu-Jones1,	Casey	S	Greene2	
1	Graduate Group in Genomics and Computational Biology, Computational Genetics Lab, Institute for Biomedical
Informatics, University of Pennsylvania.	Email:	brettbe@med.upenn.edu	
2	Department of Systems Pharmacology and Translational Therapeutics, Institute for Biomedical Informatics,
Institute for Translational Medicine and Therapeutics, University of Pennsylvania	

Source	Code:	https://github.com/greenelab/continuous_analysis	
Example	Project:	https://github.com/greenelab/DAPS/	(Example	Project)	
License:	BSD3	
	
Reproducing	experiments	is	vital	to	science.	Being	able	to	replicate,	validate	and	extend	previous	
work	also	speeds	new	research	projects.	Reproducing	computational	biology	experiments,	which	
are	scripted,	should	be	straightforward.	But	reproducing	such	work	remains	challenging	and	time	
consuming.	In	the	ideal	world	we	would	be	able	to	quickly	and	easily	rewind	to	the	precise	
computing	environment	where	results	were	generated.	We	would	then	be	able	to	reproduce	the	
original	analysis	or	perform	new	analyses.	We	introduce	a	process	termed	"continuous	analysis"	
which	provides	inherent	reproducibility	to	computational	research	at	a	minimal	cost	to	the	
researcher.	Continuous	analysis	combines	Docker,	a	container	service	similar	to	virtual	machines,	
with	continuous	integration,	a	popular	software	development	technique,	to	automatically	re-run	
computational	analysis	whenever	relevant	changes	are	made	to	the	source	code.	This	allows	results	
to	be	reproduced	quickly,	accurately	and	without	needing	to	contact	the	original	authors.	
Continuous	analysis	also	provides	an	audit	trail	for	analyses	that	use	data	with	sharing	restrictions.	
This	allows	reviewers,	editors,	and	readers	to	verify	reproducibility	without	manually	downloading	
and	rerunning	any	code.	

CURRENT SYSTEM CONTAINER-BASED APPROACH

Author’s Local Machine

Mac OS 10.10.5
R 3.1.3
Hgu133plus2 v18

HeLa dataset
Source Code

223
Significant

Genes

A. B.

Reader A

Ubuntu 14.04
R 3.2.4
Hgu133plus2 v19

HeLa dataset
Source Code

228
Significant

Genes

Reader B

Mac OS 10.10.4
R 3.3.0
Hgu133plus2 v20

HeLa dataset
Source Code

227
Significant

Genes

Authors build Docker Image

223
Significant

Genes

Ubuntu 14.04

Docker

R 3.2.4
Hgu133plus2 v18

HeLa dataset
Source Code

223
Significant

Genes

Release	Docker	
Image	

Mac OS 10.10.5

Docker

R 3.2.4
Hgu133plus2 v18

HeLa dataset
Source Code

Readers

BOSC 2016 – Open Science and Reproducibility
Day Two, 9 July 2016, 14:40 – 15:30
Session chair: Peter Cock

This talk is accompanied by poster #18.

Reproducible Research in the Cloud with the Refinery Platform

Nils Gehlenborg1, Shannan J Ho Sui 2, Ilya Sytchev2, Stefan Luger3, Fritz Lekschas1, Richard W Park1, Jennifer
Marx1, Scott Ouellette 1, David R Jones4, Anton Xue 1, Psalm Haseley1, Marc Streit3, Winston Hide 2,4, Peter J Park1

1 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
2 Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
3 Department of Computer Science, Johannes Kepler University Linz, Linz, Austria
4 Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK

Website: http://refineryplatform.org
Repository: https://www.github.com/parklab/refineryplatform
License: MIT (+ additional clause) https://github.com/parklab/refineryplatform/blob/develop/LICENSE
Correspondence: nils@hms.harvard.edu

The Refinery Platform is a data analysis environment for reproducible research that links a data
repository with analysis pipelines and visualization tools within a single user interface. The goal
of Refinery is to facilitate analysis and interpretation of genomic and epigenomic data in a
reproducible fashion. To support this, the data repository is built around the ISATab data model
(http://isatools.org) and analyses are executed in Galaxy (http://usegalaxy.org). Workflows are
configured, launched, and monitored through the Refinery user interface, which offers a
sophisticated file browser that operates on data set sample annotations. Among other efforts,
we have created an instance of the Stem Cell Commons based on Refinery for the Harvard
Stem Cell Institute with over 200 stem cell related data sets.
Originally designed to run on institutional or lab compute clusters, we have recently extended
Refinery to be able to execute analyses on the Amazon Web Services (AWS) platform and to
overcome some of the limitations of typical research computing environments. Refinery relies on
Galaxy Cloudman (http://cloudman.irb.hr) to provide a Galaxy cluster on AWS. To reduce the
effort required to deploy Refinery instances on AWS, we are creating custom Cloudman
machine images that include the tools that we need for specific instances. By deploying our own
compute cluster on AWS rather than relying on the availability of local infrastructure, the
platform will also be more attractive to outside developers.
A second challenge that we recently addressed to make analyses more reproducible is the
visualization of the provenance graphs that result from the execution of workflows on data sets
with dozens of files. While nodelink diagrams are useful to convey the flow of data from the
input through the tools of workflows to the outputs, this representation does not scale to more
than a handful of typical workflow executions. We have designed a new approach that employs
dynamic graph aggregation and expansion based on user interest. Users can expand a subset
of highly compressed graph to view details of a particular analysis without losing the overall
context. Additionally, filters can be applied to hide part of the provenance graph—for example
analyses conducted before a particular date—on demand.
The combination of cloudbased workflow execution, automated tracking of provenance
information, and tools to visualize data provenance allows Refinery users to conduct
reproducible computational research without any additional effort.

The Refinery Platform project is funded by NIH (R00 HG007583) and the Harvard Stem Cell Institute. Additional
support is provided by an AWS in Education Research Grant.

BOSC 2016 – Open Science and Reproducibility
Day Two, 9 July 2016, 14:40 – 15:30
Session chair: Peter Cock

This talk is accompanied by poster #19.

Title ReportMD: Writing complex scientific reports in R
Author Peter Humburg
A�liation Garvan Institute of Medical Research
Contact p.humburg@garvan.org.au
URL https://github.com/humburg/reportmd
License MIT

R is commonly used for complex analyses of large datasets. To improve the reproducibility of such analyses
and provide the necessary documentation it is increasingly common to use literate programming techniques.
Although R has had the ability to embed R code in long-form documents describing the analysis and presenting
the results for many years via Sweave, it has been the introduction of RMarkdown that has driven the
increasing popularity of this approach. The relative simplicity of authoring Markdown documents and the
ability to convert these into a large variety of output formats via pandoc combined with the tight integration
with RStudio make this approach easy to use and powerful at the same time.

While this is an essential technique for reproducible data analysis and much progress has been made over
recent years to facilitate this literate programming approach, some challenges remain. One such issue is that
complex analyses are best split into smaller units to retain some modularity but at the same time are likely
to depend on the results of earlier stages of the analysis, i.e. modules may have complex interdependencies.

The solution to this problem provided by knitr is the use of child documents. These can be referenced in
a main document and will then be evaluated separately and concatenated into one, potentially very large,
document. While this has the advantage that multiple analysis modules can be combined into a larger report
and all parts of the analysis are collated in a single document, ensuring that they are not inadvertently
separated, it also has its downsides. In particular, it does not distinguish well between the data analysis and
the presentation of the results obtained through this analysis. While both of these are intimately related
and should not be entirely separated the natural flow of an analysis and the order imposed by internal
dependencies is not always well suited to the e�ective presentation of results.

At the other extreme a commonly employed alternative largely separates the presentation layer from the
analysis documents. Although this approach incorporates selected outputs from the analysis, such as figures
and tables, into the presentation layer these connections are often fragile and a disconnect between the
presentation and analysis layers can easily occur.

An approach that falls between these two extremes may be preferable. The aim is to produce a document
that is designed to facilitate the presentation of results without being constraint by the structure of the
analysis documents, forming a presentation layer on top of the analysis layer, while maintaining tight links
between the two. To accomplish this such a document should

• have direct access to the R objects produced during the analysis;
• respond to changes in the analysis documents with corresponding changes in the presentation layer; and
• facilitate cross-references between individual documents.

The R package ReportMD presented here aims to provide the infrastructure required to achieve this. Build on
top of Rmarkdown it is easy to use in existing work flows. ReportMD extends knitr ’s chunk dependencies to
extend across document boundaries and provides facilities to automatically load cached results from chunks
in other documents. This makes it straightforward to include figures, tables and other summaries in the
presentation layer while the required computations are documented in detail in an analysis document.

1

BOSC 2016 – Late-Breaking Lightning Talks
Day Two, 9 July 2016, 16:00 – 17:00
Session chair: Karsten Hokamp

This talk is accompanied by poster #20.

Apollo Genome Annotation Editor: Latest Updates, Including New Galaxy
Integration

Monica C Munoz-Torres1, Nathan A Dunn1, Deepak Unni2, Eric Yao3, Eric Rasche4, Colin
Diesh2, Christine E Elsik2, Ian Holmes3, and Suzanna E Lewis1

1 Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, CA. Email:
MCMunozT@lbl.gov
2 University of Missouri, Divisions of Plant and Animal Sciences, Columbia, MO.
3 University of California Berkeley, Bioengineering, Berkeley, CA.

Project Website: http://genomearchitect.org/
Source Code: https://github.com/GMOD/Apollo
License: Berkeley Software Distribution (BSD) License. See
https://github.com/GMOD/Apollo/blob/master/LICENSE.md

Manual curation is crucial to improving the quality of the annotations for a genome sequencing
project. During this portion of the genome sequencing workflow, curators use a variety of
experimental evidence to improve on automated predictions to more accurately represent the
underlying biology.

Apollo is a web-based genome annotation editor that allows curators to manually revise and edit
genomic elements. It provides a reporting structure for annotated genomic elements and an
‘Annotator Panel’ that allows users to quickly browse the genome and all available annotations.
Users can manually edit the structure of a genomic element as well as add metadata, including
references to other databases, adding functional assignments to genes and gene products with
specific lookup support for Gene Ontology (GO) terms, as well as including references to
published literature in support of these annotations.

Apollo is currently used in more than one hundred genome annotation projects around the world,
ranging from the annotation of a single species to lineage-specific efforts supporting annotation
for dozens of organisms at a time. Apollo enables collaborative, real-time curation (akin to
Google Docs); researchers may restrict access to certain annotations depending on the role of
users and groups within the community, as well as share tracks of evidence data with the public.
Users are able to export their manual annotations via FASTA and GFF3 files, the Chado
database schema, and web services. The news hot of the presses is that Apollo is now available
for integration with Galaxy via Docker! This allows users to run analyses on their genome of
interest, including a step of manual curation, all from the comfort of their installation of the
versatile Galaxy platform.

BOSC 2016 – Late-Breaking Lightning Talks
Day Two, 9 July 2016, 16:00 – 17:00
Session chair: Karsten Hokamp

This talk is accompanied by poster #21.

An	Invitation	to	the	bioinformatics	community	to	participate	in	the	
HUBzero®	open	source	release	

Michael	Zentner1,	Ishwar	Chandramouliswaran2,	Richard	Zink3	

1	Purdue	University,	West	Lafayette,	IN.	Email:	mzentner@purdue.edu	
2	National	Cancer	Institute,	Bethesda,	MD.	
3	Purdue	University,	West	Lafayette,	IN.	
	
Project	Website:	http://www.hubzero.org		
Source	Code:	https://github.com/hubzero		
License:	GNU	General	Public	License	

The	HUBzero®	platform	enables	online	scientific	communities	to	collaborate	and	explore	science	
by	sharing	information	and	computational	resources.		HUBzero	HUBs	facilitate	collaboration	using	
shared	projects,	groups,	and	resource	collections.		HUBzero	HUBs	also	allow	easy	deployment	of	
simulation	and	modeling	tools.	Members	can	put	a	simple	user	interface	on	their	tools	in	a	matter	of	
weeks,	and	deploy	those	tools	over	the	web,	enabling	others	to	run	them	in	their	browser	without	
downloading	or	installing	any	code.		Today	over	60	scientific	communities	use	HUBzero,	with	2	
million	visitors	annually.		HUBzero	is	sustainable	as	a	funded	component	of	more	than	20	grants,	
service	contracts,	and	its	own	foundation	from	a	variety	of	agencies	/	entities	including	the	NSF,	
NIH,	AFRL,	non-profit	societies,	and	corporations,	and	lately	has	been	receiving	interest	from	the	
bioinformatics	community.		HUBzero	has	been	adopted	by	the	National	Cancer	Institute	(NCI),	U.S.	
Army	Medical	and	Materiel	Command	(MRMC),	the	Regenstrief	Foundation	(RF),	and	the	
Regenstrief	Center	for	Healthcare	Engineering	(RCHE)	to	form	the	HUBs	NCIP	Hub,	cceHUB,	
CitSciBio	hub,	and	CatalyzeCare.		A	goal	of	the	National	Cancer	Informatics	Program’s	NCIP	Hub	is	
to	create	community	driven,	adaptive,	and	collaborative	environments	to	promote	exchange	of	
research	ideas	and	resources,	such	as	software	tools,	data,	standards,	or	other	relevant	digital	
assets	in	this	open	access	resource	that	includes	nearly	400	public	resources	about	imaging,	
pathology,	informatics,	and	more.	MRMC	and	RF	sponsor	cceHUB,	where	many	special	interest	
communities	share	data	and	use	data	search	and	exploration	interfaces	to	apply	systems	
engineering	principles	to	the	treatment	of	cancer,	for	both	prospective	and	retrospective	clinical	
research.		NCI	sponsors	CitSciBio	hub	as	an	online	space	for	the	growing	and	virtually	dispersed	
biomedical	citizen	science	resources,	projects,	references,	methods,	and	communities	to	be	
discovered.		RCHE	has	formed	a	community	on	their	CatalyzeCare	hub	where	hospitals	voluntarily	
contribute	the	alert	streams	emanating	from	smart	IV	pumps	to	the	community,	benchmark	
themselves	against	each	other,	and	collectively	improve	overall	patient	safety	by	creating	a	set	of	
best	practices	regarding	infusions.		HUBzero	provides	common	infrastructural	components	to	these	
communities,	including	compute	environments	like	Purdue’s	community	cluster,	Open	Science	Grid,	
and	parallel	Matlab	computing	from	Cornell’s	Red	Cloud	environment.		It	also	provides	support	for	
R	tool	development,	assembly	of	complex	workflows	with	Pegasus,	and	collaborative	development	
capability	for	bioinformatics	tools	using	linux	workspaces	available	in	a	web	browser	interface.		As	
these	communities	interact	with	their	HUBs,	we	expect	to	contribute	to	the	creation	of	a	
‘community	impact	score’	based	on	data	sharing,	software	sharing,	discoverability,	annotation,	and	
use	and	reuse.	Individuals	engaged	in	cancer	research	or	medical	device	informatics	can	become	
members	by	visiting	www.nciphub.org,	www.ccehub.org,	www.citscibio.org,	and	
www.catalyzecare.org.		We	invite	members	of	the	biomedical	informatics	field	to	join	the	HUBzero	
community	and	contribute	to	their	open	source	development	efforts	as	applications	or	core	
capabilities	in	the	HUBzero	open	source	release	to	better	meet	the	needs	and	use	cases	of	the	field.	

BOSC 2016 – Late-Breaking Lightning Talks
Day Two, 9 July 2016, 16:00 – 17:00
Session chair: Karsten Hokamp

This talk is accompanied by poster #22.

PDBonsteroids$–$compressive$structural$bioinformatics$

Peter%W.%Rose1,2,%Anthony%R.%Bradley1,2,%Alexander%S.%Rose2,%Yana%Valasatava2,%Jose%M.%Duarte1,2,%
Andreas%Prlić1,2%
%
1%RCSB%Protein%Data%Bank,%San%Diego%Supercomputer%Center,%UC%San%Diego,%peter.rose@rcsb.org%
2%Structural%Bioinformatics%Laboratory,%San%Diego%Supercomputer%Center,%UC%San%Diego%
%
Project$Website:%http://mmtf.rcsb.org/%
Source$Code:%https://github.com/rcsb/mmtf%
License:%Apache%2%(Java,%Python%API),%MIT%(JavaScript%API)%
%
Abstract$
We%are%developing%compressed%3D%molecular%data%representations%and%
workflows%(“Compressive%Structural%Bioinformatics”)%to%speed%up%
mining%and%visualization%of%3D%structural%data%by%one%or%more%orders%of%
magnitude.%Our%data%representations%allow%scanning%and%analyzing%the%
entire%PDB%archive%in%minutes%or%visualizing%structures%with%millions%of%
atoms%in%a%web%browser%on%a%smart%phone.%

Compactandself=contained$data$representation%X%Existing%textXbased%file%formats%for%macromolecular%
data%are%slow%to%parse,%are%not%easily%extensible,%and%do%not%contain%certain%key%data%(e.g.,%all%bonding%
information).%For%these%reasons%we%have%developed%the%Macromolecular%Transmission%Format%(MMTF)%
(http://mmtf.rcsb.org/).%MMTF%has%three%core%benefits%over%existing%file%formats.%First,%through%custom%
compression%methods,%the%entire%Protein%Data%Bank%(PDB)%archive%can%be%stored%in%7GB.%This%enables%fast%
network%transfer%for%visualization%and%inXmemory%processing%of%the%entire%PDB.%Second,%MMTF%data%are%
serialized%into%MessagePack%(http://msgpack.org),%a%compact,%extensible%and%efficient%format,%similar%to%JSON,%
but%binary%for%faster%parsing.%Third,%MMTF%is%user%friendly,%extensible%and%contains%information%not%found%in%
current%formats.%In%this%work%we%show%that%MMTF%enables%highXperformance%visualization%and%scalable%
structural%analysis%of%the%PDB%archive.%

High=performance$web=based$visualization$=$The%MMTF%files%are%served%directly%from%RAM%using%a%
RESTful%service.%This%low%latency%service,%combined%with%the%reduced%individual%file%size%and%the%increased%
parsing%speed%of%the%binary%format%facilitates%high%performance%webXbased%visualizations.%Specifically%we%
have%seen%a%greater%than%20x%speedup%over%mmCIF%in%loading%of%PDB%entries%from%sites%across%the%USA,%
Europe,%and%Asia.%Using%the%MMTF%JavaScript%API%and%NGL,%a%highly%memoryXefficient%WebGLXbased%viewer%
(https://github.com/arose/ngl),%even%the%largest%structures%in%PDB%can%be%visualized%on%a%smart%phone.%

High=performance$distributed$parallel$workflows%X%The%order%of%magnitude%increase%in%parsing%speed%
enables%scalable%Big%Data%analysis%of%3D%macromolecular%structures.%A%Hadoop%sequence%file%(binary%flat%file%of%
key%value%pairs,%optimized%for%parallel%sequential%access)%of%MMTF%data%is%released%and%updated%weekly%for%
the%entire%PDB%archive.%Distributed,%parallel%processing%is%then%possible%from%this%file,%using%Big%Data%
frameworks%such%as%Apache%Spark%(http:spark.apache.org/).%As%an%example,%we%have%used%this%file%for%ligand%
extraction.%We%extracted%all%ligands%from%the%PDB%using%the%MMTF%Hadoop%file%with%Apache%Spark%in%about%3%
minutes.%In%contrast,%using%mmCIF%files%as%input,%the%same%task%took%several%hours.%

The%MMTF%file%format%enables%a%paradigm%change%for%structural%bioinformatics%applications.%It%is%now%possible%
to%store%the%entire%PDB%in%memory%to%eliminate%I/O%bottlenecks,%to%rapidly%visualize%large%structures%over%the%
web,%and%to%trivially%perform%distributed%parallel%processing%on%laptops,%desktops,%and%compute%clusters.%

This%project%was%supported%by%the%National%Cancer%Institute%of%the%NIH’s%Big%Data%to%Knowledge%initiative%
(BD2K)%under%award%number%U01%CA198942.%

BOSC 2016 – Late-Breaking Lightning Talks
Day Two, 9 July 2016, 16:00 – 17:00
Session chair: Karsten Hokamp

This talk is accompanied by poster #23.

Puzzle: VCF/GEMINI interface for genetic disease
analysis
Authors: Robin Andeer, Måns Magnusson, Henrik Stranneheim
Affiliations: Department of Molecular Medicine and Surgery, Science for Life Laboratory, Center for
Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
Email: robin.andeer@scilifelab.se
Project website: https://robinandeer.gitbooks.io/puzzle/content/
Source code: https://github.com/robinandeer/puzzle
License: MIT

VCF and BCF files are the ubiquitous storage formats for variant calls. However, at their
core it’s no more than tab-delimited text files. They lack a powerful and standardized data
model to enable sophisticated genetic analysis. Converting VCFs into a GEMINI database
goes a long way to enable this type of complex processing. However, they are not human
friendly when it comes to inspecting their contents. You need knowledge of SQL and the
internal schema. This isn’t something you can expect from your average clinical or
research users.

Puzzle is a web interface for variant calling resources (VCF files and GEMINI databases). It
lets you organize, inspect, filter, annotate, explore and analyze variant calls in a web
browser. It provides a unified and intuitive interface for all loaded resources and can be
used by anyone without computer programming literacy. It’s already used extensively by
clinicians and researchers at Karolinska Hospital working with a wide range of genetic
disorders.

These are the main highlights of Puzzle:

• Simple installation (PyPI or Bioconda) and minimal setup
• Automatic discovery of resources, just point to a folder and Puzzle will do the rest
• Support for single nucleotide variant (SNV) and structural variant (SV) analysis
• Gene panels and human phenotype ontology (HPO) support
• Automatic annotations on gene and transcript level
• Support for grouping samples into logical groups like families
• Support for comments and highlighting of interesting variants

We set out to make Puzzle simple to install and intuitive to use. It’s implemented in Python
as a stand alone web server with a light weight SQLite backend. You can visualize your
variant calls in minutes with minimal prerequisites. Simply point it to a directory with some
VCF files to get started:

$ puzzle view tests/fixtures/

BOSC 2016 – Late-Breaking Lightning Talks
Day Two, 9 July 2016, 16:00 – 17:00
Session chair: Karsten Hokamp

This talk is accompanied by poster #24.

Modernization	of	the	Cytoscape	ecosystem	

Keiichiro	Ono1,	Eric	Sage2,	Barry	Demchak3	

1	University	of	California,	San	Diego.	La	Jolla,	CA	USA.	Email:	kono@ucsd.edu	
2	University	of	California,	San	Diego.	La	Jolla,	CA	USA.	Email:	eric.david.sage@gmail.com	
3	University	of	California,	San	Diego.	La	Jolla,	CA	USA.	Email:	idekerlab.bdemchak@gmail.com	
	
Project	Website:	http://www.cytoscape.org/		
Source	Code:	https://github.com/cytoscape/		
License:	LGPL/MIT	License		
	
Abstract	

Cytoscape	is	the	de-facto	standard	biological	network	analysis	and	visualization	platform	–	its	first	
version	was	released	in	2002.		Compared	to	other	systems	biology	tools,	it	is	one	of	the	oldest	
applications	and	it	has	one	of	the	largest	user	and	developer	communities.		Maintaining	
sustainability	of	such	platform	is	a	challenge	due	to	its	desktop-only	deployment,	evolving	user	
needs	and	changing	funding	scenarios.		Cytoscape’s	extensibility	mechanism	is	a	plugin	architecture,	
called	Apps,	and	has	been	a	great	way	to	satisfy	diverse	community	needs.		However,	it	is	
insufficient	for	modern	bioinformatics	workflows	requiring	massive	memory	and	parallelization,	
such	as	is	available	on	emerging	web-	and	cloud-based	application	platforms.	

Today,	data	analysis/visualization	tools	are	in	transition	from	desktop	applications	to	loosely	
coupled,	large-scale	distributed	systems	with	support	for	different	types	of	clients,	including	web	
browsers	and	command	line	applications.		The	desktop	version	of	Cytoscape	is	not	designed	to	
support	such	use	cases.		To	provision	for	these	modern	bioinformatics	workflows,	we	are	
modernizing	Cytoscape	ecosystem	using	mainstream	technologies	and	design	techniques	including	
a	service-oriented	architecture	with	microservices,	containers,	browser-based	visualization	
components,	and	web/native	hybrid	applications.		The	new	Cytoscape	ecosystem,	called	Cytoscape	
Cyberinfrastructure	(CI)	is	the	main	project	for	modernizing	the	Cytoscape	platform.	

In	this	presentation,	we	will	discuss	the	technical	challenges	of	modernizing	long-lived,	widely-used	
bioinformatics	applications	and	will	introduce	the	new	Cytoscape	CI	architecture	and	technologies	
we	used	for	the	process.	

	

Desktop
Cytoscape 3.4

Publish to the web Science Direct App

Apps
Cytoscape
App Store Service Repository

Polyglot App Development Electron

REST API cyREST
py2cytoscape

RCy3

Data Repository

NDEx

Web

Cytoscape.js

React-Based Components
Visualization Components

Network Viewer

Table Viewer

UI ComponentsComposite WidgetNDEx Valet

Cyberinfrastructure

Services
Implementations

Fast ID Mapping (Go)

Format converter (Go)

Network Image Generator (Python)

DeploymentDocker

Standard Data FormatCX

Job RouterELSA

BOSC 2016 – Late-Breaking Lightning Talks
Day Two, 9 July 2016, 16:00 – 17:00
Session chair: Karsten Hokamp

Collaborative Software Development: Lessons from Open Source

Abigail Cabunoc Mayes 1, Mozilla Science Lab team and contributors

1
Mozilla Science Lab, Mozilla Foundation, Toronto, Ontario, Canada. Email:

abigail@mozillafoundation.org

Since the Mozilla Science Lab launched three years ago, we’ve tested ways to help the

research community work together to build new tools for science. Through our open
source projects and code sprints , we’ve seen that despite the interest in scientific
software development, that sustaining development and doing so collaboratively remain

a challenge.

Pulling from the open source community, we’ve developed trainings and mentorship

programs to bring some of those lessons and values to the scientific software

community. The materials in our Working Open Workshop take the norms and

protocols for open source community organization and development and unpack tips to

facilitate collaborative learning and contributorship. We are investing in leaders and

facilitators who can help the research community learn to build software together.

The Working Open Workshop followed by oneonone mentorship focuses on a few

practical ways to get started in open source, such as roadmapping, identifying pathways

for new participants, engaging with contributors, open licensing and software citation.

By working openly, a project lead demonstrates and encourages learning and

participation. While mentorship and community engagement are vital throughout the

life of a project, a few key steps can help jumpstart community involvement. This talk

will outline a few ways to help elevate contributors to work more collaboratively and

sustainably in the open.

BOSC 2016 – Poster-only Abstracts
Both Days, 10 & 11 July 2016, 13:00 – 14:00

Poster #25.

Lightweight sample labeling, barcoding and tracking systems for

the academic laboratory

Dimitra Sarantopoulou1, Anand Srinivasan4, Steve Vitale1, Katherine Theken3, Emanuela
Riciotti 3, Faith Coldren1, Tilo Grosser1,3, Gregory R. Grant1,2
1Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA.
Email: dimitras@sas.upenn.edu
2Department of Genetics, University of Pennsylvania, Philadelphia, PA
3Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania,
Philadelphia, PA
4Penn Medicine Academic Computing Services, University of Pennsylvania, Philadelphia, PA

Source Code: https://github.com/dimitras/collos
License: MIT License

Abstract:

In the typical lab many bench investigators will come and go over the years and labs will
accumulate a large collection of samples. Traditionally in most laboratories sample
labeling and tracking of these samples is a problem that is left up to the individual bench
investigators and it often amounts to no more than a few handwritten cryptic indications
on the side of a tube and some notes in a notebook, or at best in an Excel spreadsheet.
When people leave labs it can become very difficult for those remaining to pick up the
pieces of their research, often because of an idiosyncratic and confusing documentation
of their samples. The value of overcoming this problem is therefore enormous. However
achieving a more sophisticated system, with barcoding and full sample tracking, has
traditionally been too expensive for all but the most highly funded labs because of the
significant overhead and expert systems support required. To overcome this limitation,
we have developed a lightweight system called CollOS (Collection Of S amples), together
with detailed documentation that will allow any lab to achieve relatively sophisticated
sample labeling and tracking without excessive overhead. In particular we give specific
guidance on hardware and software setup which reflects our experience testing
numerous labels under harsh conditions. The entire system can be installed for under
$5000. This is not a commercial endorsement and we have no commercial interest in the
recommended hardware it is simply an unbiased review.

BOSC 2016 – Poster-only Abstracts
Both Days, 10 & 11 July 2016, 13:00 – 14:00

Poster #26.

Kronos: a workflow assembler for genome analytics and informatics

M Jafar Taghiyar1,2, Jamie Rosner1, Diljot Grewal1,2, Bruno Grande3, Radhouane Aniba1,2,
Jasleen Grewal3, Paul C Boutros4,5, Ryan D Morin3, Ali Bashashati1,2, and Sohrab P
Shah1,2

1Department of Molecular Oncology, British Columbia Cancer Agency. Email: jtaghiyar@bccrc.ca
2Department of Pathology and Laboratory Medicine, University of British Columbia.
3Department of Molecular Biology and Biochemistry, Simon Fraser University.
!4Ontario Institute for Cancer Research.
!5Department of Medical Biophysics, University of Toronto.

Project URL: https://github.com/jtaghiyar/kronos
 https://github.com/MO-BCCRC
License: MIT

Background
The field of next generation sequencing informatics has matured to a point where algorithmic advances in
sequence alignment and individual feature detection methods have stabilized. However, practical and
robust implementation of complex analytical workflows still requires significant programming investment
and expertise. For example, analysis of cancer genomes may invoke sequence alignment followed by
mutation, copy number, and rearrangement detection, followed by annotation of predicted functional
effects of these alterations. In both research and clinical settings it is vital to encode specific analytical
protocols for transparency of derivative results and clinical audits.

Results
We present Kronos, a software platform for automating the development and execution of reproducible,
auditable and distributable bioinformatics workflows. Kronos obviates the need for explicit coding of
workflows by transforming a text configuration file into an executable Python script. Given a set of existing
components (analysis modules), a new workflow can be created in three simple steps:

Step 1. Create a configuration file template by running kronos make_config command.
Step 2. In the template, specify the order by which the !components in the workflow should be run.
Step 3. Create the workflow by running kronos init command with !the template as input.

!The result is an executable Python script that uses the built-in run manager of Kronos. The run manager
provides scalability by enabling users to run the workflow on a single machine or a cluster of computing
nodes. Moreover, each component in the workflow can individually be run either locally, or on a cluster.
Workflows created by Kronos are highly modular and configurable through configuration file editing. The
workflows are fully encoded for ease of distribution and can be instantiated on external systems, promoting
and facilitating reproducible research and comparative analyses. Kronos also has a framework for making
components. Each component is an analysis module wrapped according to the framework. A component
template can be made using kronos make_component command. Developers can use the framework to
implement custom tools, reuse existing tools, and contribute to the community at large. Kronos is shipped
with Docker and Amazon AWS machine images. It is free, open source and available through Python
Package Index.

Conclusion
This work provides a framework towards rapid integration of new (and optimal) genomic analysis advances
in high-throughput studies. The flexibility, customization, and modularity of the resulting pipelines make it
an attractive system to use in any high-throughput genomics analysis endeavour. We expect Kronos will be
a small but foundational step towards standardization and distribution of NGS workflows in both clinical
and research applications. !

BOSC 2016 – Poster-only Abstracts
Both Days, 10 & 11 July 2016, 13:00 – 14:00

Poster #27.

PhyPipe: an automated pipeline for phylogenetic

reconstruction from multilocus sequences

Nicolás D. Franco-Sierra1, Mateo Gómez-Zuluaga2, Juan F. Díaz-Nieto1, Javier C. Alvarez1

1Grupo CIBIOP, Departamento de Ciencias Biológicas, Universidad EAFIT. Medellín, Colombia. Email: nfranco@ea�t.edu.co
2Centro de Computación Cientí�ca APOLO, Dirección de Informática, Universidad EAFIT. Medellín, Colombia.

Website: https://gitlab.com/cibiop/phypipe/wikis/home

Repository: https://gitlab.com/cibiop/phypipe

License: BSD 3-Clause License, see https://gitlab.com/cibiop/phypipe/blob/master/LICENSE

Phylogenetic reconstruction based on multiple loci of DNA sequences is nowadays a common task in many �elds
of biological research such as: ecology, epidemiology, evolution, and taxonomy, among many others. This process
involves several methodological steps for going from a DNA sequence to a �nal output tree (i.e., sequence alignment,
testing substitution models, concatenation of loci, phylogenetic reconstruction). Phylogenetic analyses require the use
of di�erent bioinformatic tools that demand human supervision in intermediate steps, in particular, it is necessary to
edit input �les with the output of previous analyses. A disconnected approach between those steps could lead to a
time consuming and error-prone task, specially when multiple runs are required (e.g., same dataset and di�erent run
parameters or di�erent datasets with or without varying the parameters). Thus, this seems to be a common problem
in bioinformatic routines. Previous e�orts have developed work�ow management tools that can handle routines using
di�erent phylogenetic systematic software; nonetheless, none of such routines are particularly developed to tackle
the problem of developing partitioned phylogenetic analyses. Our approach is particularly useful for reducing both
error in intermediate steps and overall time in the phylogenetic reconstruction, in addition to facilitate the multilocus
reconstruction when major or minor changes are needed to the initial dataset or running parameters.

In this work we present Phypipe, an automated pipeline written in a programming language for bioinformatic
pipelines named bpipe 1, that aims to facilitate and speed-up phylogenetic reconstructions using multilocus concate-
nated analyses. Phypipe is intended to be used with multiple-locus data. The program receives as input multiple FASTA
�les (one per locus) containing DNA sequence data and it also supports previously aligned sequences. DNA data can
be either from coding or non-coding regions from organelle or nuclear genomes.

The work�ow consists of four major stages using the following dependencies:
• An alignment step (MAFFT and RevTrans for coding sequences)
• Concatenation of all alignment �les in a single �le (homescript in Python)
• Best partition scheme search (partition�nder)
• Phylogenetic reconstruction using Bayesian Inference (BI) or Maximun Likelihood (ML). (MrBayes for BI, and

Garli or RAxML for ML)
The routine implements wrapper scripts in Python for reading each stage’s output �le and creating the corre-

sponding con�guration �le of subsequent steps. Often, these kind of analyses are performed by wet lab biologists or
researchers with little computational experience, consequently an automated approach would be helpful to obtain re-
sults in a short time, avoiding the software manipulation and learning curve. This software is also useful for researchers
in molecular systematics or bioinformaticians with previous experience in the included tools. Although detailed knowl-
edge of the included software is not mandatory to run Phypipe, the potential of this pipeline would be maximized if
the researcher is familiar with each independent program. Thus, researchers can modify software parameters before
running the complete pipeline and obtain results while saving time.

1Sadedin, S. P., Pope, B., Oshlack, A. (2012) Bpipe: A tool for running and managing bioinformatics pipelines. Bioinformatics

28(11) 1525-6. doi:10.1093/ bioinformatics/bts167

BOSC 2016 – Poster-only Abstracts
Both Days, 10 & 11 July 2016, 13:00 – 14:00

Poster #28.

Skip the line and balance your work with vQ

Gregory Zynda⇤, Mehmet Dalkilic†, and Matthew Vaughn‡

17th Annual Bioinformatics Open Source Conference (BOSC) 2016, Orlando, FL, USA

Repository: https://github.com/zyndagj/vQ
License: BSD 3-Clause

Processor core-counts are climbing in servers, computational accelerators, and even the phones in our
pockets. The bioinformatics community takes advantage of this trend with threaded applications to utilize
all available processor cores. While threading improves workflows at the workstation-level, they provide
little benefit on high-performance supercomputers. Supercomputers, like Stampede at The Texas Advanced
Computing Center and Comet at The San Diego Supercomputing Center, are not monolithic mainframes
with immense resources that are shared between programs and users like on a traditional desktop. Instead,
they are comprised of thousands of separate computers that can be reserved in groups to cooperatively
work on computing tasks over a network. Sequence assembly is among the most arduous of bioinformatics
tasks due to the substantial computational resources and large, complex datasets it requires. To reduce
the time it takes to assemble a genome, developers have begun to develop multi-process workflows that
align to using cluster architecture by submitting concurrent tasks as separate jobs to a centralized scheduler
that manages resource usage across the system. Job schedulers usually implement a queue of some sort.
This means that while concurrent job submissions are possible, the total run time for the task is limited
by resource availability in that queue. And, resources are often in short supply. Most shared computing
clusters, from department-level systems, up to national class systems such as those provided by the National
Science Foundation, are oversubscribed with long queues. This renders any assumption that hundreds or
thousands of job submissions can run to accomplish a given task totally impractical.

To improve the run times for such tasks, we developed the vQ, a virtual queue for multi-node jobs that
will dynamically balance the execution of tasks issued with normal SLURM, SGE, TORQUE, and OpenLava
(LSF) commands across a pre-allocated set of computing nodes on a shared resource. A distributed workflow
system that previously relied on submitting and running thousands of jobs and/or sitting resident on a master
node can now be structured as a single job which waits in a shared queue only once before commencing
execution and does not unfairly consume shared resources on a login node. We show that this drop-in
solution removes queue overhead and improves the experience of running complicated workflows like Trinity,
SMRT, Falcon, Canu, Celera, and Cluster Flow. Most importantly, unlike Makeflow [3] or TACC’s Launcher
utilities which assume the tasks in a workflow can be described in a simple text file [2, 1], vQ requires no
modifications to the original tools and works out-of-the-box with a minimal, user-level installation. Thus,
vQ provides a potential solution to queue bottlenecks in current distributed bioinformatics tools.

References

[1] Victor Eijkhout. pylauncher: The python launcher. https://github.com/TACC/pylauncher, 2012.

[2] Lucas AWilson and John M Fonner. Launcher: A shell-based framework for rapid development of parallel
parametric studies. In Proceedings of the 2014 Annual Conference on Extreme Science and Engineering
Discovery Environment, page 40. ACM, 2014.

[3] Li Yu, Christopher Moretti, Andrew Thrasher, Scott Emrich, Kenneth Judd, and Douglas Thain. Har-
nessing parallelism in multicore clusters with the all-pairs, wavefront, and makeflow abstractions. Cluster
Computing, 13(3):243–256, 2010.

⇤Texas Advanced Computing Center, University of Texas at Austin. Email: gzynda@tacc.utexas.edu
†School of Informatics and Computing, Indiana University
‡Texas Advanced Computing Center, University of Texas at Austin

BOSC 2016 – Poster-only Abstracts
Both Days, 10 & 11 July 2016, 13:00 – 14:00

Poster #29.

Using the Nextflow framework for reproducible insilico omics
analyses across clouds and clusters

Paolo Di Tommaso1, Evan Floden1,2, Maria Chatzou1,2 , Cedric Notredame1

1 Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain.
2 Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
Email: paolo.ditommaso@crg.eu.

Project Website: http://www.nextflow.io
Source Code: https://github.com/nextflowio/nextflow
License: GPLv3

Reproducibility has become one of biology’s most pressing issues. This impasse has been
fueled by the combined reliance on increasingly complex data analysis methods and the
exponential growth of biological datasets. When considering the installation, deployment and
maintenance of bioinformatic pipelines, an even more challenging picture emerges due to
the lack of community standards. The effect of limited standards on reproducibility is
amplified by the very diverse range of computational platforms and configurations on which
these applications are expected to be applied (workstations, clusters, HPC, clouds, etc.).
With no established standard at any level, diversity cannot be taken for granted.

Nextflow is a pipeline orchestration tool that has been designed to ease deployment and
guarantee reproducibility across platforms. It is a computational environment, which provides
a domain specific language (DSL) to simplify the writing of complex distributed
computational workflows in a portable and replicable manner. It allows the seamless
parallelization and deployment of any existing application with minimal development and
maintenance overhead, irrespective of the original programming language.

The builtin support for container technologies such as Docker and Shifter, along with the
native integration with the Git tool and popular codesharing platforms like GitHub, make it
possible to precisely prototype selfcontained computational workflows, maintain all
variations over time and rapidly reproduce any former configuration one may need to reuse.
These capabilities guarantee consistent results over time and across different computing
platforms.

Using a simple RNASeq based analysis we show how two seemingly irreproducible
analyzes can be made stable across platforms when ported into Nextflow. Applying the
transcript quantification tool Kallisto and the companion differential expression package
Sleuth, we highlight how the same pipeline produces different results on Mac OSX and
Linux. With a well studied dataset, 67 genes are only reported as significant on the Mac and
72 only reported in the Linux analysis out of a total of 6,138 differentially expressed genes.
When the same pipeline was factored into Nextflow with Docker, the results were identical
across platforms.

